

IEA SHC Task 66: Solar Energy Buildings

Integrated solar energy supply concepts for climate-neutral buildings and communities for the "City of the Future"

Presentation of Final Results

Current and future technologies for Solar Energy Buildings

Michael Gumhalter, AEE INTEC – Leader Subtask D

Limassol Cyprus

August 27, 2024

Task 66 Solar Energy Buildings Subtask D

Task66: Presentation of Final Results

Review of SEB initiatives & related projects

Demo Cases from Task 66

- Stand alone buildings to city districts (+ lab sites)
- Very ambitions demonstration cases
- Emerging technologies
- Upgrading single technologies to be part of a larger system

EuroSun2024

EUROSUN 2024

27.08.24

4

Review of SEB initiatives & related projects

126 SEBs in 17 countries

<u>SEB</u>	Name of SEB Example	Country	<u>DHH</u>	<u>Link</u>
No.				
1	Act2	Germany	Moderate - High HDD	<u>Link</u>
2	Act2	France	Low HDD	<u>Link</u>
3	Active office	United Kingdom	Low - Moderate HDD	<u>Link</u>
4	Aerem factory	France	Low HDD	<u>Link</u>
5	AquaTurm Water Tower Hotel	Germany	High HDD	<u>Link</u>
6	BEEM-UP	Sweden	High HDD	<u>Link</u>
7	BEEM-UP	Netherlands	Low - Moderate HDD	<u>Link</u>
8	BEEM-UP	France	Low - Moderate HDD	<u>Link</u>
9	BUILDSMART	Sweden	High HDD	<u>Link</u>
10	CITyFiED	Sweden	High HDD	<u>Link</u>
11	CITyFiED	Turkey	Low HDD	<u>Link</u>
12	CITY-ZEN	Netherlands	Low - Moderate HDD	<u>Link</u>
13	CITY-ZEN	France	Low HDD	<u>Link</u>
14	CLASS1	Sweden	High HDD	<u>Link</u>
15	Commercial Building Kobra	Slovenia	Moderate - High HDD	<u>Link</u>
16	Concert or Conference Hall "The House for All"	France	Moderate - High HDD	<u>Link</u>
17	Concerto AL Piano	Italy	Low HDD	<u>Link</u>
18	DIRECTION	Germany	Moderate - High HDD	<u>Link</u>
19	DIRECTION	Spain	Low HDD	<u>Link</u>
20	ECO-Life	Denmark	Moderate - High HDD	<u>Link</u>
21	ECO-Life	Belgium	Low - Moderate HDD	<u>Link</u>
22	Eco-Renovation of KTR France HQ	France	no information on exact location	<u>Link</u>
23	Education and Leisure Hub	France	Low - Moderate HDD	<u>Link</u>
24	EE-HIGHRISE	Slovenia	Moderate - High HDD	<u>Link</u>
25	Efficiency House Plus	Germany	no information on exact location	<u>Link</u>
26	Elithis Tower	France	Low - Moderate HDD	<u>Link</u>
27	Energy in Minds!	Sweden	High HDD	<u>Link</u>
28	Energy Positive Dwelling	Netherlands	Low - Moderate HDD	<u>Link</u>

Task66: Presentation of Final Results

Classification of SEBs

Geography and climate

Source: Eurobase Cooling and Heating degree days

Source: AEE INTEC

EUROSUN 2024

27.08.24

Classification of SEBs Technologies

	eneration chnologies	Storage Technologies	Thermal Grids	Buildings/ Communities	
Technology.	. Technology	Sub-Technnology 2			
Generation	Solar Electric	Photovoltaic systems (PV)			
	Solar Thermal	Solar thermal collector (ST)			
	Hybrid (solar	Air PVT-collectors			
	thermal and solar	Concentraing PVT-collectors			
	electric)	Covered water PVT-collectors			
		Evacuated tube PVT-collectors			
		Uncovered water PVT-collectors			
		Uncovered water PVT-collectors with fin heat exchanger to incre			
	Sorption collectors	Charge Boost-sorption collector			
	Heat pumps	Absorption heat pump			
		Adsorption heat pump			
		Air-source heat pump using heat recovery			
		Ground-source heatpump with ground heat exchanger			
		Ground-source heatpump with inclined or deep horizontal wells			
		Heat pumps with (PV)T-collectors as heat source			
		Heat pumps with direct solar evaporator			
		High-temperatur heat pumps			
		Metal hybrid heat pump			
		Natural refrigerant heat pump			
		Sate of the art air-to-air heat pump			
		Synthetic methane heat pump			
		Water to water heat pump			
	Wind	Micro wind turbines			
	Hybdro	Small hydropower plant			
	Cogeneration	Fuel cell micro-CHP			
	Biomass	Pellets burning stove and boiler			
		Wood-burning stove			
	Biogas	Biogas plants			

Task66: Presentation of Final Results

Classification of SEBs

Technologies

Genera Techno		Storage Technologies	Thermal Grids	Buildings/ Communities	
Technology	. Technology	Sub-Technnology	Â		
Storage	Electricity	Battery storage			
		Community Battery storage			
		Mobile electircal storage (E-mobility	with vehicle to Grid)		
		Redox flow battery			
		Salt water battery			
	Latent	Thermal storage- Latent (PCM)-solid-	liquid ice storage		
	Mechanical	Pumped storage			
	Sensible	Hot water tanks			
		Large scale sensibel storage			
		Thermal activated building mass			
		Thermal storage with vacuum insulat	ion		
	TCM (thermo chemical sto.	. Null			
	Ungerground thermal	Aquifer thermal energy storage			
	storage	Borehole thermal energy storage			

Classification of SEBs

Technologies

Generation Technologies

Storage Technologies

Buildings/ Communities

Technology	Technology	Sub-Technnology §
Thermal	Heating and	Absorption-heat exchangers
grids	Cooling	Booster heatpumps
	System	Anergy or ultra-low temperature networks
	integration	Demand Side Management / Demand Response
	and operation	District cooling
	operación	Integrated energy systems
		Integration of waste heat and low exergy sources
		Low temperature district heating grids
		Model predictive and adaptive Control Strategy for the Operatio
		Solar thermal district heating
		Virtual power plant

Classification of SEBs Technologies

Generation Technologies		Storage Technologies	Thermal Grids	Buildings/ Communities
Technology Grouping	Technology	Sub-Technnology	Â	
Buildings/Communities	Heating and	Dynamic thermo-regulative walls/windows		
	Cooling	Energy active Facades		
		Facade integrated mico heatpump		
		Thermal building mass activation		
		Thermal mass activation under building		
	System	Assisted fault detection & efficiency diagno	ostic system	
	integration	Demand (electricity, DHW, Space heatig sp	ace cooling) and gen	
	and operation	Demand response - Gamification devices		
	operation	Demand response - Virtual net metering		
		Demand response- Open automated deman	id response	
		Digital building (community) twins		
		Smart Energy Management Systems		
		User-centered pro-active building managem	nent system	

Evaluation of technical solutions

Task66: Presentation of Final Results

EUROSUN 2024

27.08.24

11

Market potential of technical solutions

Technology	Sub-Technnology													
Solar Electric	Photovoltaic systems (PV)													•
Solar Thermal	Solar thermal collector (ST)												•	
Hybrid (solar	Uncovered water PVT-collectors with fin heat e											•		
thermal and solar	Uncovered water PVT-collectors										•			
electric)	Covered water PVT-collectors										•			
electric)	Air PVT-collectors									•				
	Evacuated tube PVT-collectors													
	Concentraing PVT-collectors								•					
Sorption collectors	Charge Boost-sorption collector								•					
Heat pumps	Water to water heat pump							-						٠
	Ground-source heatpump with ground heat exc							-						٠
	Sate of the art air-to-air heat pump												•	•
	Air-source heat pump using heat recovery												•	
	Heat pumps with (PV)T-collectors as heat source												•	
	Natural refrigerant heat pump											•		
	High-temperatur heat pumps											•		
	Heat pumps with direct solar evaporator											•		
	Ground-source heatpump with inclined or deep											•		
	Adsorption heat pump										•			
	Absorption heat pump										•			
Wind	Micro wind turbines									•				
Hybdro	Small hydropower plant									•				
Cogeneration	Fuel cell micro-CHP									•				
Biomass	Pellets burning stove and boiler												•	•
	Wood-burning stove											•		
Biogas	Biogas plants									•				
		0	1	2	3	1	2	3	1	3	5	7		9
			Marke	t potenti	al	Probab	ility of oc	urrence		Тс	otal ra	atina		

Technology	Sub-Technnology			
Electricity	Battery storage			•
	Salt water battery			•
	Community Battery storage			•
	Mobile electircal storage (E-mobility with vehicl.		•	
	Redox flow battery		•	
Latent	Latent (PCM)-solid-liquid ice storage			•
Mechanical	Pumped storage		•	
Sensible	Hot water tanks			•
	Thermal activated building mass			•
	Thermal storage with vacuum insulation		•	
	Large scale sensibel storage			

SOLAR HEATING & COOLING PROGRAMME INTERNATIONAL ENERGY AGENCY

EuroSun2024

TASK 66

Task66: Presentation of Final Results

Charge Sout GENERATION cro wind tu Ground with e Hp 2 STORAGE NICTO CHP Con storage RON Biogas plants uncover with fin attery Solar Thermal therr HP with direct Hotwate storage ible storage Larg lar evaporator bsorption HP energy Aquife thermal Thermal activated Wood burning energy storage Photovoltaic building mass stove ice storage Adsorption HP Pellets burning stove Pumped storage and boiler Energy active facades Battery storage Low temp DHgrids Mobile electric storage User-centere pro-active building managementsystem Booster Facade integrated Model P Adsorption **Market Potential** Pumps feat Exchanger III Jos dino Low Middle High CONNUNITS & **Total Rating** Integr pue THERMAL U Middle High Low

Energy Technology Guide

Clean Energy Technology Radar

Technologies and components across the whole energy system that contribute to achieve the goal of SEBs

15

Task66: Presentation of Final Results

EUROSUN 2024

27.08.24

New technologies and components for Solar Energy Buildings

- The information about selected technologies are presented in Fact sheets
 - Description of the technology
 - Examples: Images of the application of solutions

Storage technologies: Rock Red Storage

References: scientific literature, journals, links to relevant documents
and projects

Storing thermal energy in rock or pebble beds has be over a century. Recently, there has been a revival of in fossil fuels. The interest is driven by the need to store thermal power plants, process heat or power to heat (P	The building sector, responsible Nost notably, the existing buildin quarters of this stock are energy the next 20 years to enable o simultaneously transitioning to re Current standard renovations us	
its cost-effectiveness, safety, and environmental frie	allow charging and discharging. Air is a popular choice for ndliness. In process heat applications, thermal oils are eit with operational temperature limitations around 300°C.	bonding to existing walls comple Long renovation times, including acceptance of the renovation p
	tations like space heating. Some rock types like Dolerite or ery high temperatures exceeding 1000°C, also alternative ar superior heat durability.	systems, radiators, etc.) pose n distribution losses and tempers feasible only with significant co relocation.
The large surface area within a rock bed enables exceptionally high rates of heat transfer, with over 50% of the medium's energy effectively exchanged with the storage with each volume passing through.	Imaked sequences patient in constantion as times of a validated Incohord Sciences, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15	The ENERGY FACADE CEPA6 research institute AEE INTEC. represents both a radical and dis concepts of modular prefabricate
As a result, the fluid entities the storage relation noally the same tomportune as the fluid action of the nock- bed (see figure 1). This ensures an optimal performance of connected seals thermal air heaters, which provide higher efficiencies at lower temperatures. During the charging process, the temperature gradient progresses gradually from the storage, marking the completion of the charging cycle.	Toget + Studies of the state is 11	
		Figure 1: Exemplary system com These large, highly insulated o processes with high precision, re
A strate hereiter hereit		for the approximities 20 of the personal neutral private components of the temperature and making the integration of the and making the integration of the and making the integration of the temperature advanced on the temperature of the temperature of the temperature of temperature of the maximum of temperature of temperature of the maximum of temperature of temperature of the entropy the making the component of the temperature making the component of the temperature of the temperature of the temperature of the temperature of the temperature of the temperature of the temperature of the temperature of the temperature of the temperature of the temperature of temperature of the temperature of tempe

Figure 2: Solar space heating with rock bed applied in projects in the Altiplano and in Ladakh 1997-2018 [1] [2]

Building and Community: Energy active facades

The EU has committed to reducing to greenhouse pay (RME) emissions by 55% by 2005 compared to 1996 versit. The building sector, spreadels to 52% cold PM emissions, by pay a round refer an advertise thread the sector pay and the sector of the sector pay and the sector pay and the sector pay and the sector of the sector sector every entitient and the sector sector of the sector sector

Junet standard stroutors use Extrant Thermal Instalation Composes Systems (ETCS), but their investable compling to sating water complicates mattering incorping and presents compared landardinases are their lifetypoliung resources in moduling necessary coefficiency pare significant barriers, affecting resident disruption cooperation of the extransional process. Additionally, custated every distluction systems bearing distlucture systems, relation, etc.) pare initia due to leaks and demonstrate substantial impowement potential in terms of distlucture interpreture levels. Additionaling hearing distroution instraine customer publicing in other leasable only with significant construction efforts, thus incurring high costs and frequently nocessitating resident distants.

ENERGY FACADE CEPA8 was developed through collaborative research between SME Towem3000 and earch institute AEE INTEC. It was conceptualized in a strategic sequence of preliminary projects. CEPA8 reserts both a radical and disruptive inovasion in the energy retrofiting of existing buildings by combining the cepts of module retrablocated facade elements and fermal component advalation into a single approach.

Wall – Energy Storage (concrete, bricks...)
Heat emission system (heating/cooling)
Thermal insulation
Sobstructure
Sobstructure
Sobstructure
Facade cladding

Figure 1: Exemplary system components of CEPA® energy facade, Source Towern3000

here large, holy's mainted outries fiquide elements our be manufactured in factories through standardized costess with high previous, nachoid prepriestation enrors in constant on by 1-055. The costs assembly finance in the approximately 20 m⁻¹ facade module, using a mattele cane without scattaffing and involving about three ensortin induring PMUC components, cane the relaciade by our DVD. See of the one elements in an active hast marker large, aim is a addart barries, misgrates (in the prelationate facade element. By a patented moder, pressing the patient relaced has used by a patented moder, pressing the patient relaced hast of the prelation and facade element. By a patented code, he system is hast transfer capability significantly moreases, roughly doubling the least transfer performance of making the migration of hasting largers in trades enviropes tradesite.

By transitions has them the outside, the thermal mass of the existing control weak's unknown ultimized within by the small component axistance. TOO, hobitating to definite presents. The unknown energy freshild groups mer markes and supports managing the nonsang usafelity in exist-toop market drives by floctuating ensemble analigns from sale or well. In address the managing sales and provide managers or any sales. The "Orienteding analysis drives and or well. In address the managing sales and provide managers or any sales. The "Orienteding analysis groups and related investment needs in gird expansion. The ENERGY FACAGE CEPME addresses effective yees markets and existence groups."

The externally located TCA as a minimally invasive serial renovation concept with the potential for energy flexibility is seen as a game-changer. It aids property owners of large housing stocks not only in maintaining or increasing

Task66: Presentation of Final Results

EUROSUN 2024

27.08.24

16

www.iea-shc.org

Task66 Manager: Dr. Harald Drück harald.drueck@igte.uni-stuttgart.de https://task66.iea-shc.org/

Speaker: Michael Gumhalter, m.gumhalter@aee.at