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IEA Solar Heating and Cooling Programme

The Solar Heating and Cooling Programme was founded in 1977 as one of the first multilateral technology
initiatives ("Implementing Agreements") of the International Energy Agency. Its mission is

“to enhance collective knowledge and application of solar heating and cooling through international
collaboration to reach the goal set in the vision of solar thermal energy meeting 50% of low temperature

heating and cooling demand by 2050.”

The member countries of the Programme collaborate on projects (referred to as “Tasks”) in the field of
research, development, demonstration (RD&D), and test methods for solar thermal energy and solar

A total of 53 such projects have been initiated to-date, 39 of which have been completed. Research topics

Solar Space Heating and Water Heating (Tasks 14, 19, 26, 44)
Solar Heat or Industrial or Agricultural Processes (Tasks 29, 33, 49)

Solar Buildings/Architecture/Urban Planning (Tasks 8, 11, 12, 13, 20, 22, 23, 28, 37, 40, 41, 47, 51, 52)

Materials/Components for Solar Heating and Cooling (Tasks 2, 3, 6, 10, 18, 27, 39)
Standards, Certification, and Test Methods (Tasks 14, 24, 34, 43)

buildings.

include:

A

A Solar Cooling (Tasks 25, 38, 48, 53)

A

A Solar District Heating (Tasks 7, 45)

A

A Solar Thermal & PV (Tasks 16, 35)

A Daylighting/Lighting (Tasks 21, 31, 50)
A

A

A Resource Assessment (Tasks 1, 4, 5,9, 17, 36, 46)
A

Storage of Solar Heat (Tasks 7, 32, 42)

In addition to the project work, there are special activities:

YV V V V

Country Members

Australia

Austria

Belgium

China

Canada

Denmark

European Commission

Sponsor Members

European Copper Institute
ECREEE

Further information:

For up to date information on the IEA SHC work, including many free publications, please visit www.iea-

shc.org.

SHC International Conference on Solar Heating and Cooling for Buildings and Industry
Solar Heat Worldwide — annual statistics publication
Memorandum of Understanding — working agreement with solar thermal trade organizations
Workshops and conferences

Germany Singapore
France South Africa
Italy Spain

Mexico Sweden
Netherlands Switzerland
Norway Turkey
Portugal United Kingdom

Gulf Organization for Research and Development
RCREEE

Country cases for Germany, Austria, Italy and Denmark


http://www.iea-shc.org/
http://www.iea-shc.org/
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Preface

This report deals with solar thermal technologies and investigates possible roles for solar thermal in future
energy systems for four national energy systems; Germany, Austria, Italy and Denmark. The project period
started in January 2014 and finished by October 2017.

This report is based on research performed by Aalborg University with the collaboration of Subtask A project
partners Sebastian Herkel and Andreas Palzer from Fraunhofer ISE, Marcus Hummel and Richard Biichele
from the Technical University of Vienna as well as Bengt Perers and Simon Furbo from the Technical
University of Denmark. Additional collaboration with other subtask project partners has contributed to
enhancing the methodology and reporting of the research. Contributions from Rasmus Lund from Aalborg
University are also appreciated.

We wish to say thank you to the Danish Energy Agency who funded this work through the EUDP programme
(Energy technology Research and Development programme).

= N

Energiteknologisk udvikling og demonstration

September, 2017, Copenhagen

Brian Vad Mathiesen & Kenneth Hansen
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Glossary

IEA SHC International Energy Agency — Solar heating and Cooling Programme

CHP Combined Heat & Power plant

District heating areas

Areas supplied by district heating networks

Individual areas

Areas not in district heating areas

CEEP

Critical excess electricity production. Electricity production which exceeds
demands and cannot be exported or stored. Also called unused electricity.

PV Photovoltaics

BAU Business-as-usual scenario for the national energy systems in 2050

High-RES High-renewable scenario used for analysing the role of solar thermal

Thermal plants Condensing power plants, CHP plants and district heating boilers

Solar thermal The solar thermal penetration rate is the share of buildings that are connected
penetration rate to a solar thermal system either directly or thorugh a district heating system
Solar thermal Solar thermal technologies that are selected for detailed analyses in this study
concepts

Solar thermal The maximum solar thermal that technically can be installed in an energy system
potential given the solar thermal penetration rate. Further details in section 7.2.
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1 Executive summary

Solar thermal technologies have expanded rapidly in Europe in the last 5 years, more than doubling in
production [1]. This has primarily taken place in individual buildings, but solar thermal for district heating is
also growing, particularly in Denmark. However, the question remains regarding the potential for installing
solar thermal in energy systems and whether solar thermal is a viable solution for Europe to achieve its
energy targets, or if better alternatives exist. These questions have been investigated thoroughly in this study
for four European countries; Germany, Austria, Italy and Denmark.

This study is part of Subtask A in the IEA SHC Task 52 entitled Solar thermal and Energy Economy in Urban
Environments. Further reports in Subtask A include other ways of investigating solar thermal in Germany, the
potential for heat savings in selected European countries as well as analysis of the cost performance of small
solar thermal systems.

The primary objective of this study is to enhance the understanding of the role of solar thermal in future
energy systems. The role of solar thermal is analysed with a horizon of 2050 and a high renewable energy
target at the national or international level.

The analysis is based on the creation of scenarios for selected countries and reflects the combined view of
electricity, heat and transport while taking into account the dynamics of changes in the energy systems, in
particular on the parts of the system that directly link to solar thermal energy. Focus is the role of solar
thermal in future smart energy systems with integrated electricity, heat and transport sectors.

All of this is combined in this report using an energy system model called EnergyPLAN (www.EnergyPLAN.eu),
which simulates the hourly operation of the heating, cooling, electricity, industry, and transport sectors over
a single year. Using EnergyPLAN, the current and future energy system for each of the four countries is
simulated based on the historical year 2010 (Ref 2010), and based on a future ‘Business-As-Usual’ forecast
by the European Commission for the year 2050 (BAU 2050). These two scenarios represent where we are
today and where we are likely to end up if we continue using energy in the same way in the future as we do
today. Subsequently, a number of scenarios are created for each country for the year 2050. The scenarios
that are used for solar thermal analysis also includes future systems with lower heat demands due to building
retrofits (Heat savings scenario) and expansions in the district heating supply (District heating scenario).
Ultimately, the scenarios aim at designing a high-renewable energy system (high-RES scenario) in the heating
and electricity sectors. The role of solar thermal is afterwards thoroughly analysed in each of these scenarios
for the four countries to cover a variety of future energy system trajectories. In total, more than 250 hour-
by-hour scenarios have been developed for this research project for the creation of the future renewable
energy systems, the various types of solar thermal analyses as well as the sensitivity analyses. This makes the
research robust across a variety of conditions and energy system types.

The role of solar thermal in the energy system is measured by quantifying its impact separately for each
country in terms of three key metrics: energy (primary energy supply), environment (carbon dioxide
emissions), and economy (total annual energy system costs). The economic costs in this study are understood
as the societal energy system costs in terms of infrastructure investments, operation and maintenance, fuel
costs and CO»-costs, excluding taxes, subsidies and externalities such as health costs, climate change, etc.

The solar thermal concepts that are analysed in the study include five different types:
e Concept 1: CS-SFH. Solar-combi systems in single family houses.
e Concept 2: CS-MFH. Solar-combi systems in multi-family houses.
e Concept 3: BH-DE. Solar assisted heating of building blocks and urban quarters (roof-mounted
collector field).
e Concept 4: SDH-DK Diurnal. Solar assisted district heating (ground mounted collector field) with
diurnal storage.
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e Concept 5: SDH-DK Seasonal. Solar assisted district heating (ground mounted collector field) with
seasonal storage.

Solar concepts 1-3 are individual heat supply options while solar concepts 4-5 are district heating options.

The role of solar thermal has been analysed in three different ways:
- The marginal impact of installing 1 TWh solar thermal (individual and district heating) in each
country and scenario
- The maximum solar thermal potential in each country and scenario
- The impact of installing the maximum solar thermal potential

1.1 Conclusions and recommendations

The overall conclusion from the study is that solar thermal has a role to play in a future energy
system by 1) easing the pressure on scarce resources and 2) supplying heat where no alternative heating
sources are available. Installing solar thermal could increase the socio-economic costs, but this is highly
impacted by the energy system configuration. The results show that the overall solar thermal potential
across the countries and various energy system types is in the range of 3-12% of the total heat production.
The socio-economic costs are higher in a high-renewable energy system with high shares of solar thermal
compared to installing solar thermal in the current energy systems. Similarly, the advantages of solar
thermal reduce in terms of reductions of fossil fuels and COz-emissions when transitioning towards a high-
renewable energy system.

The main conclusions and recommendations from the solar thermal analysis are outlined below.

1. The energy system design is crucial in terms of solar thermal feasibility

2. The solar thermal penetration is crucial for the solar thermal potential

3. Based on the analyses in this report the technical solar thermal potential is in the range of 3-12% of
the heat production
Installing solar thermal could lead to higher energy system socio-economic costs
Solar thermal could ease the pressure on scarce renewable resources such as biomass
Solar thermal will be competing with other renewable sources in a high-renewable energy system
Some advantages of solar thermal decrease in a high-renewable energy system

A full energy system perspective is required to analyse the feasibility of solar thermal

L % N o v &

The findings in this study apply to a variety of energy system types
10. Certain factors might improve the solar thermal feasibility

11. Further research is required regarding the role of solar thermal in future energy systems

1.2 Marginal impact analysis

The marginal impact of installing 1 TWh solar thermal is analysed to identify the impacts of supplying a small
share of the heat supply with solar thermal. The solar thermal capacity installed is selected so it is comparable
across the countries, since these differ considerably in terms of overall heat demands.

Figure 1 shows that installing 1 TWh of solar thermal in the individually supplied areas (solar concepts 1-3)
and in district heating areas (solar concepts 4-5) will in some cases lead to increasing socio-economic costs
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and in other cases to decreases in the 2050 scenarios. This shows that the overall socio-economic impacts
depend on a number of factors such as fuel prices, solar thermal production costs, energy system design, etc.
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Figure 1: Marginal changes in socio-economic costs in the BAU 2050 scenarios when installing 1 TWh of solar thermal.

For the high-RES scenarios in Figure 2 the socio-economic impact is more uniform as the socio-economic
costs increase in all scenarios in all countries when installing 1 TWh of solar thermal energy. This is due to
the decreasing cost reductions from fuel savings, since fuel is now supplied by low cost fuels such as industrial
excess heat and heat pumps using renewable electricity. This suggests that the economic feasibility of solar
thermal might reduce when moving towards a high-renewable energy system.
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Figure 2: Marginal changes in socio-economic costs in the high-RES scenarios when installing 1 TWh of solar thermal.

The key findings from the marginal impact analysis show that the solar thermal impact depends on what is
directly and indirectly replaced in the energy system meaning that integrated energy systems analysis is
necessary to analyse the role of solar thermal.

The impacts on primary energy are related to three factors; the technologies that are replaced, the efficiency
of the replaced technology as well as the fuel source for the replaced technology (fossil fuel, biomass
consumption or fuel free, e.g. wind power, geothermal).
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The key factors impacting socio-economic costs are; the fuel prices, the discount rates, the technology
investment prices as well as the solar thermal production costs.
e Findings for four of the five scenarios (the scenarios where there is still significant fossil fuel
consumption; 2010, 2050 BAU, heat savings and district heating):

o Installing 1 TWh of solar thermal replaces 1 TWh of alternative heat production (individual
oil, gas or biomass boilers or CHP plants and district heating boilers in district heating areas)

o Installing 1 TWh of solar thermal replaces approximately 1 TWh of primary energy in
individual areas. For district heating systems the total primary energy increases, while the
fossil fuel consumption decreases.

o Installing solar thermal in district heating areas reduces CHP electricity production and
conversely increases the condensing power plant production.

o The COz-emissions decrease when installing solar thermal in individual areas. In the district
heating areas, some countries experience increasing CO,-emissions while other countries
experience decreasing emissions depending on the fuels replaced.

o The socio-economic costs increase in individual areas when installing solar thermal as the
additional investment costs exceed the savings in fuel expenditures. In district heating areas,
the economic impacts are cost-neutral, but depend on the fuels replaced.

e Findings for the high-RES scenario where fossil fuels are only consumed in the transport sector:

o Installing 1 TWh of solar thermal in the individual areas replaces 1 TWh of heat production
from heat pumps or biomass boilers. In the district heating areas, less than 1 TWh of heat
production is replaced due to mismatches between periods with solar thermal supply and
district heating demand.

o Installing additional solar thermal in individual areas results in decreasing electricity demand
due to lower heat pump operation. When installing additional solar thermal in district
heating areas the CHP plants produce less heat and electricity, thereby requiring the
condensing power plants to produce more.

o Less than 1 TWh of biomass is replaced in the individual areas when installing solar thermal
as highly efficient production from heat pumps is replaced. In district heating areas, the
biomass reductions are even lower due to the system design with fuel-free heat sources such
as geothermal and industrial excess heat and efficient supply from large heat pumps.

o There are no impacts on CO,-emissions in the high-RES scenario as no fossil fuels are
consumed.

o The socio-economic costs increase in the high-RES scenarios in both individual and district
heating areas in all countries when increasing the solar thermal production due to the lower
value of the fuels replaced (biomass, wind power) and since there are no CO; costs.

1.3 The technical solar thermal potential analysis

The second type of analysis is the maximum technical solar thermal potential in each country for the different
scenarios in both individual areas and district heating areas. The technical solar thermal potential is defined
as the solar thermal production potential that the energy system might accommodate in terms of reducing
mismatches between energy supply and demand. For example, this includes reducing the overproduction of
solar thermal to district heating networks and reducing the overproduction in individual houses where solar
thermal produces more energy than is required or can be stored. No considerations have been included
regarding space requirements, manpower for installing the plants, impact on landscapes, etc. Further criteria
are defined in section 7.2.

Figure 3 is an illustration of the solar thermal potential as a share of the total heat production in individual
supplied areas when assuming a solar thermal penetration rate of 35%. A 35% solar thermal penetration rate
means that 35% of all buildings are connected to a solar thermal plant, either directly in the building or
through a district heating network. The 35% solar thermal penetration rate is an example to illustrate the
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solar thermal production potentials and the potentials might increase with a higher penetration rate. The
figure shows that the solar thermal production share for individual areas is between 4-7% of the total
individual heat production across the countries with a solar thermal penetration rate of 35%. The potential
is limited to 4-7% as further solar thermal does not align with the heat demand profiles and hence
overproduction is created.
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Figure 3: Solar thermal share potentials for individual heating in the four countries with a solar thermal penetration rate of 35%.

The solar thermal share in the district heating areas is 6-10% of the total district heat production with a 35%
solar penetration rate as shown in Figure 4. This indicates that the solar thermal share can be higher in district
heating areas than in individually supplied areas and is caused by further options to store and share the heat
between consumers and the larger flexibility through technologies such as CHP plants and heat pumps.
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Figure 4: Solar thermal share potentials for district heating in the four countries with a solar thermal penetration rate of 35%.

When combining the individual heating and district heating solar thermal potentials, an analogous trend
appears between the countries, see Figure 82. Overall, the solar thermal production share might be 5-8%
when assuming a solar penetration rate of 35%. When increasing the penetration rate to 50% the combined
solar thermal potential is 6-12% while a lower penetration rate of 20% will lead to a maximum potential of
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3-6% of the heat production. This indicates that the number of buildings connected to the solar thermal
plants is crucial for the overall solar thermal production potential.
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Figure 5: Total solar thermal share potentials in the four countries with a solar penetration rate of 35%.

The technical solar thermal potentials with a solar thermal penetration rate of 20-50% are:
e Germany: 15-60 TWh/year or 3-11% of the total heat production
e Austria: 2-7 TWh/year or 4-12% of the total heat production
e ltaly: 8-24 TWh/year or 2-10% of the total heat production
e Denmark: 2-5 TWh/year or 3-10% of the total heat production

The key findings from the maximum solar thermal potential analysis are:

e The solar penetration rate is essential for the overall solar thermal potential in both individual and
district heating areas.

e The energy system flexibility is crucial for the ability to integrate solar thermal energy and is based
on two key factors:

o Theshare of baseload district heating production affects the ability of the system to integrate
solar thermal.

o The share of variable renewable electricity sources and the link to the heating sector through
heat pumps and CHP plants.

e The technical production potential is impacted by the total heat demand in each country. However,
the heat demand differences between the countries has only a slightly impact on the overall potential
for the solar thermal share of the total heating production.

e The potential solar thermal share is between 5-8% of the heat production when assuming a solar
penetration of 35%. This might increase to 6-12% with a 50% penetration and decrease to 3-6% with
a 20% penetration.

1.4 The impact of installing the solar thermal potential

The third type of analysis is the impact of installing the maximum solar thermal potential (50% solar thermal
penetration rate) in each country in the various scenarios. The impacts are specified in terms of fossil fuel
consumption, biomass consumption, CO,-emissions and socio-economic costs.

The impacts of installing the maximum solar thermal potential on the fossil fuel consumption differ between
the district heating areas and the individual heat areas as can be seen in Figure 6. In the individually supplied
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areas, installing the maximum solar thermal potential decreases the fossil fuel consumption by 0.5-1.5% of
the total fossil fuel consumption in the energy system compared to installing no solar thermal. This does not
apply to the high-RES scenario where no fossil fuels are replaced.

For the district heating areas, there is less impact on the fossil fuel consumption when installing the maximum
solar thermal potential as the highest reduction in fossil fuel consumption is 0.5% in Denmark. For the other
countries, installing the maximum solar thermal potential results in small fossil fuel changes. The increases
in fossil fuels are caused by the solar thermal plants replacing CHP plants thereby reducing the CHP heat and
electricity production. As a consequence, condensing power plants operate more resulting in an overall lower
energy system efficiency. With the current fuel mix this results in more coal consumed in the power plants
and a reduction in natural gas consumption in the CHP plants. This depends on the model assumptions
regarding electricity supply as a different energy system design, where more renewable electricity sources
and energy storage are installed simultaneously as the solar thermal would result in different impacts.

When combining the impacts for the individual and district heating areas the maximum fossil fuel reductions
are between 1-2% of the total energy system’s fossil fuel consumption. When moving towards the high-RES
scenario less fossil fuels can be saved and in the high-RES scenario no fossil fuels are replaced.
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Figure 6: Fossil fuel reductions as a share of the energy system consumption for individual and district heating networks when
installing the maximum solar thermal potentials.
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A similar analysis has been conducted regarding the biomass consumption as illustrated in Figure 7. In all the
countries, the largest biomass reductions take place in the individual heat supply where biomass boilers are
replaced in the 2010, 2050 and in heat savings scenarios. In the District heating and high-RES scenarios more
heat pumps are installed, which are supplied by electricity that is partly based on biomass consumption
through power plant production. The reductions in biomass demands are a result of the technologies
replacement, i.e. the share of biomass supply already installed in the energy system. Overall, these biomass
reductions, as a share of the total biomass consumption, are largest in the 2010 scenarios and decrease when
moving towards the high-RES scenario. In the 2010 system 2-4% of the biomass can be saved when installing
the maximum solar thermal potential in both individual and district heating areas. In the high-RES scenario,
the biomass reduction decreases to a level around 1-2% of the total biomass consumption. This suggests that
solar thermal can contribute to reducing the dependence on biomass resources in the future. The combined
fuel savings in terms of fossil fuels and biomass is in the region of 2% of the total consumption.
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Figure 7: Biomass reductions as a share of the energy system consumption for individual and district heating networks when
installing the maximum solar thermal potentials.

When analyzing the impacts on the energy systems’ CO,-emissions, all the scenarios for individual heat supply
lead to CO,-savings, as also indicated by the changes in fossil fuels in Figure 6. For the district heating areas
CO,-emissions will either decrease or increase slightly depending on the fuels that are replaced when
installing the solar thermal potentials. When combining the solar thermal potentials for individual and district
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heating areas the emissions reductions are between 0.5-1.5% of the total energy system emissions. Only the
high-RES scenarios experience no impacts on CO,-emissions from solar thermal.
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Figure 8: Marginal changes to overall energy system CO;-emissions when installing the maximum solar thermal potentials.

Finally, the impacts of installing the solar thermal potentials have also been analysed in terms of socio-
economic costs, see Figure 9. Installing the maximum solar thermal potentials in the individually supplied
areas results in higher socio-economic costs in all countries and scenarios. The largest cost increases are in
the 2010 scenarios as it is assumed that the fuel prices increase in 2050 along with reductions in solar thermal
production costs. For the district heating areas, the impacts on the socio-economic costs can be considered
as cost-neutral as some scenarios increase in costs while others decrease. When combining the economic
impacts of solar thermal installations in individual and district heating systems the costs increase in almost
all the scenarios. The largest impact in terms of cost increases occurs in the 2010, 2050 and high-RES
scenarios while the impacts are smaller in the heat savings and District heating scenarios smaller. Overall,
the cost increases are between 0-1%, suggesting that installing the maximum solar thermal potentials might
increase the overall system costs. When excluding the energy system costs for vehicles, transport and
industrial fuels, the significance of installing solar thermal increases. In a situation like this, the marginal
change is three times as significant, i.e. if the solar thermal leads to an increase of total energy system costs
of 0.5%, then the increase will be approximately 1.5% when excluding the costs for vehicles and transport
and industry fuels. If the costs increase by 1%, then the increase will be approximately 3% without the costs
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for transport and industry. This occurs as the energy system costs are 60-70% lower when these costs are
excluded and hence, the solar thermal integration has a larger influence on the socio-economic costs.
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Figure 9: Marginal changes in overall socio-economic costs when implementing the maximum solar thermal potentials.

The key findings from this analysis are listed below:

Installing the maximum solar thermal potential with a 50% solar penetration is an extreme situation.
The other extreme is in the marginal analyses when 1 TWh solar thermal is installed. The overall
results are expected to be somewhere in between these.

Installing the maximum solar thermal potential in individually supplied areas reduces the fossil fuel
and biomass consumption.

If the maximum solar thermal potentials are installed in the district heating areas the impact on fossil
fuels is insignificant as oil and gas is replaced by a higher coal consumption. Moreover, the biomass
consumption decreases in all scenarios for district heating areas. The amount of fuels replaced is also
impacted by the thermal plant efficiencies.

Overall, the fossil fuel reductions are 1-2% of the total consumption while the biomass reductions
are 2-4% of the total consumption.

The changes in fuel consumption impact the CO,-emissions, which decrease by 0.5-1.5% of the total
emissions with the largest reductions in individually supplied areas. In the district heating areas,
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some scenarios have increased emissions and others will decrease when installing the full solar
thermal potential.

e No emission reductions occur in the high-RES scenario as no fossil fuels are consumed. The biomass
reductions in the high-RES scenario is around 1-2% across all scenarios.

e The socio-economic costs increase when installing the maximum solar thermal potential in the
individual areas. In the district heating areas, the solar thermal implementation is close to cost-
neutral with increasing costs in some countries and reductions in other countries.

e Overall, the costs increase by 0-1% of the total system costs when installing the maximum solar
thermal potentials in both the individual and district heating areas.

e The mostimportant factor for cost differences between the countries is the solar thermal production
costs.

Numerous sensitivity analyses have been performed for key factors regarding solar thermal technologies and
their impact on the energy system. Firstly, the reduction of solar thermal investment prices and improved
technological efficiency will improve its feasibility, however extreme cost reductions are required for solar
thermal to prove a positive socio-economy. Secondly, different fuel prices were analysed showing that fuel
prices might impact the feasibility of solar thermal, but will not impact the overall findings of the study.
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2 Introduction

The IEA Solar Heating and Cooling Programme was founded in 1977 as one of the first multilateral technology
initiatives ("Implementing Agreements") of the International Energy Agency. The country members of the
Programme collaborate on projects (referred to as “Tasks”) in the field of research, development,
demonstration (RD&D), and test methods for solar thermal energy and solar buildings.

This Task focuses on the analysis of the role of solar thermal in future energy supply systems in
urban environments. Based on an energy economic analysis - reflecting future changes in the
whole energy system - strategies and technical solutions as well as associated tools are developed.

Recent discussions questioning the role of solar thermal systems in urban areas are being raised at
different levels, which have to be considered when developing new energy supply concepts for
the urban environment.

In order to facilitate this, questions in three main R&D areas have to be answered and compiled in
a common structure:

e Subtask A: Energy Scenarios

e Subtask B: Methodologies, Tools & Case studies for Urban Energy Concepts

e Subtask C: Technology and Demonstrators

This report contains activities within parts of Subtask A.
2.1 Purpose and content of report

The main objective of Task 52 is to better understand the role of solar thermal systems in
future urban energy supply systems.

The role of solar thermal in the energy system of urban environments is identified with a horizon of 2050 and
a high renewable energy goal at the national or international level, but not necessarily on a city or regional
level solely. The scenarios reflect the combined view of electricity and heat as well as other key heat supply
technologies, such as electrical and thermal heat pumps and CHP. Different district structures are taken into
account as well as different scenarios regarding the development of the energy system. The scenarios
simulate all sectors including mobility. They are based on detailed time-series in order to reflect the dynamic
of the solar energy availability.

Objective of Subtask A

The objective of Subtask A is to analyse the role of solar thermal in the energy system of urban environments
with a horizon of 2050. The analysis are based on the development of scenarios for selected countries taking
into account modelling results with different analytical approaches. The scenarios reflect the combined view
of electricity, heat and transport and take into account the dynamics of changes in the energy systems,
focusing on the parts of the system that directly link to solar thermal energy. The competition between solar
thermal and other key heat supply technologies like electrical and thermal heat pumps and CHP as well as
PV are issues in the analysis. Different district structures are taken into account and different scenarios
regarding the development of efficiency, costs and prices. The scenarios also take into account selected key
differences in current configurations of national energy systems, that is, levels of renewable energy, nuclear,
hydro, etc. and the potential developments in the future as for example a high share of renewable energy,
fossil fuel or nuclear energy. Particularly the role of solar thermal in future smart energy systems with
integrated electricity, heat and transport supplies is addressed.
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The objectives are summarised as:

Using energy system analyses with different analytical approaches in combination with spatially
disaggregated data for creating scenarios focusing on the use of solar thermal in future energy
systems.

Identifying balances between heat savings and supply systems with relation to solar thermal.
Identifying balances between building level solar thermal and solar thermal in local district heating
networks.

Identifying the role of solar thermal in integrated renewable energy systems and in particular the
interrelation with combined heat and power (CHP) and heat pump production.

The main activities of Subtask A:

Al Identification of relevant solar thermal concepts and establishing energy system models for
enabling energy system analysis of key solar thermal concepts.

A2 Development of energy system scenarios for selected countries focusing on the analysis of
the role of solar thermal with a time horizon of 2050.

A3 Analyses of the role of solar thermal concepts in future energy systems including sensitivity
analyses regarding cost developments, national and international system integration.

Based on existing work and experiences of all partners in the Task relevant concepts for the integration of
solar thermal energy in urban areas are identified. There are two main outcomes: on the one hand this leads
to a common understanding of how to qualify the results of the different modelling approaches regarding
the use of solar thermal energy, on the other hand a common methodology for the development of scenarios
within the Task is defined. The existing models are partly extended if it shows to be necessary in order to
reflect the common methodology.

For selected countries energy system scenarios are developed with the target of a significant increase in
renewable energy supply in 2050. Main focus of the analysis is to identify the role of solar thermal energy in
the overall energy system and the barriers and drivers related to different solar thermal energy concepts.
Therefore the parts of the energy system that are directly linked to solar thermal energy are investigated in
detail mainly based on existing scenarios and ongoing projects.

2.2 Objectives of Subtask B and Subtask C

Subtask B aims at providing methodologies to support technical and economical
calculations for successful integration of solar thermal in urban environments. Depending
on the energy scenario the use of solar thermal may or may not be energetically rational or
economically viable. The intention is to identify urban planning methodologies and
calculation techniques capable to ensure an objective evaluation of the role of solar thermal
in urban energy scenario’s reflecting future regional, national and international boundary
conditions.

Objectives of Subtask B

Development of methodologies with focus on performance indicators
Energy planning tools and toolboxes (from urban planning to neighbourhoods)
Case studies analysis of different regions

In Subtask C best practice examples of solar systems with direct linkage to urban, suburban
but also municipal energy supply systems are investigated in more detail.
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The investigation is limited to the following conditions:
e Solar thermal systems with direct connection to heat and, more general, to energy supply networks
(urban, suburban and municipal level)
e Solar-assisted building blocks (micro-grids) in urban environments (urban level only)
e Renewable heating and cooling systems like Heat pumps in combination with PV

The objectives of Subtask C
e Classification of relevant (renewable-based) technologies and demonstrators in urban environments
e Screening of best practice examples
e Analysis and documentation of selected best practice examples
- Technological and economic analysis
- Analysis of bottleneck’s and success factors, lessons learned
- Analysis of monitoring data (subject to data availability)

Findings from Subtasks B and C have been used in this report when reasonable. For example, the definition
of solar thermal concepts for the energy system analyses are based on the findings from Subtask C.
Furthermore, solar thermal technical and economic performances are based on findings from Subtask C.
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3 Development of the energy system models

The countries that are modelled are Germany, Austria, Denmark and Italy, which differ significantly both in
terms of size and in terms of energy system design. For example, the energy demands in Germany and Italy
are significantly larger than in Austria and Denmark. Furthermore, in countries such as Denmark and
Germany a large share of the electricity demands might potentially be supplied from wind power due to their
location around the North Sea, while Austria has a large hydropower potential. Also in terms of climatic
conditions the countries differ with Italy located in the south of Europe and Denmark located in the northern
part of Europe. These differences allow for drawing conclusions for various types of energy systems with
regards to renewable energy systems and the integration of solar thermal technologies.

The assessment of the scenarios developed is carried out by applying a number of key parameters that
describe the feasibility of a system compared to other systems. The key parameters in this study are 1) the
economy measured as the total socio-economic costs of the systems, 2) the energy required to operate the
systems measured as primary energy supply with a particular focus on biomass demand and availability, and
3) the environmental impacts measured in CO,-emissions from the energy system. Finally, the flexibility of
the system will be analysed when developing a high-renewable system and when analysing the integration
of various solar thermal concepts. This is measured in terms of electricity exchange and imbalances in the
district heating networks throughout the year. The district heating imbalance is defined as the periods where
there is a mismatch between the district heating demands and production. A typical example is during the
summer period where the baseload district heating production from technologies such as waste incineration,
industries and geothermal exceeds the district heating demand.

Socio-economy in this study is understood as the total energy system costs in terms of infrastructure
investments, operation and maintenance, fuel costs and CO»-costs. These are calculated applying an interest
rate of 3% and excluding taxes and subsidies. By assessing the socio-economic costs, it will be possible to
assess what the future total system costs are and also if alterations in the cost distributions take place, i.e. if
investments in technologies replace expenses for fuels. The socio-economic perspective is furthermore
selected to enable analyses of the system costs directly rather than the markets around them that might not
be feasible for a future high-renewable system.

The solar thermal concepts are analysed in a number of different energy system models to allow for the
investigation of the role of solar thermal in various systems. Hence, a system similar to the existing system
(reference system 2010), a future 2050 business-as-ususal (BAU) system, and alterations in the future BAU
system towards a high-renewable system is created. These scenarios are created for national energy systems
on an aggregate level, meaning that no analysis of the individual plants is included. For example, the solar
thermal plants investigated are aggregated for the entire country rather than for plants in each building, city
or region.

The high-renewable energy models that are designed in this study do not aim at achiving an optimal system
design for a future high-renewable energy system in the target countries. This means that most likely there
will still be possibilities for optimising the high-renewable energy systems in terms of for example fuel
consumption and costs. Rather, the purpose of these high-renewable energy systems is to investigate the
role of solar thermal under such conditions. Furthermore, no restrictions have been set on the biomass
consumption in these scenarios, which is also discussed in section 7.3.

The development of the reference, BAU and the high-renewable national system models include a number
of phases. These can be seen in Figure 10 and are described in further details below the figure.
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Figure 10: Overview of steps to develop high-renewable energy systems in the four countries.

The first phase involves developing reference systems for the four countries for the year 2010. These are
based on statistical data that are collected from a number of national sources and reorganized so they are
usable in the energy modelling tool EnergyPLAN. Next, the data is entered into the model and the outputs
are assessed and calibrated against the statistical data available. The calibration entails comparing key data
such as primary energy, energy demands and production as well as CO,-emissions.

After finalizing the reference models business-as-usual models are developed based on data for projected
developments in energy sector demands and production. This data is entered into the model and small
modifications are carried out to ensure that the models can operate simulating near to real conditions. These
small modifications might include lack of capacity, unrealistic heat imbalances and electricity exchange, etc.
The reference and BAU systems are described in chapter 5.

The final phase is the development of scenarios for high-renewable energy systems. Also for this step a
significant amount of data is required and must be reorganized to match the modelling tool characteristics.
After creating a number of scenarios the impacts are assessed to allow for comparing the different options
and creating recommendations. The concrete scenarios that are developed in this phase are described in
section 6.

Finally, the role of solar thermal is assessed by integrating solar thermal into the different scenarios. The
solar thermal impacts are assessed in three ways:

e The marginal impact of installing 1 TWh

e The maximum solar thermal potentials

e The impacts of installing the maximum solar thermal potentials
The findings from these analyses are presented in chapter 7.

Based on these analyses conclusions are drawn regarding the possible role of solar thermal in future energy
systems when a small amount of solar thermal is installed (the marginal impact analysis) and with a very high
share of solar thermal (the maximum impact analysis).

In order to carry out all the phases described an appropriate energy modelling tool has to be utilized. Some
of the specifications that are required for the modelling tool include:
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e The model must integrate all energy sectors (electricity, heating, cooling, transport, industry) in order
to assess the impacts and dynamics across sectors

e The model must integrate hourly variations as this is key when analysing intermittent renewables
such as wind power and solar thermal

e The model must be able to quantify impacts on economy, energy and environment when developing
future high-renewable energy scenarios

The tool selected to meet these requirements is the EnergyPLAN tool, which is further described below.
3.1 The characteristics of the EnergyPLAN tool

The analysis of high-renewable energy systems calls for tools and models which can provide similar and
parallel analyses of electricity, thermal and gas grids. The advanced energy systems analysis model,
EnergyPLAN, has been developed to fulfil such a purpose on an hourly basis (www.EnergyPLAN.eu), so that
optimal solutions can be identified. The model has been used for analyses in numerous papers with a large
variety of topics [2]. The main purpose of the model is to assist the design of national energy planning
strategies on the basis of technical and economic analyses of the consequences of different national energy
systems and investments. However, the model has also been applied to the European level as well as to a
local level such as towns and/or municipalities. The design of EnergyPLAN emphasises the option of looking
at the complete energy system as a whole. Therefore, EnergyPLAN is designed to be a tool in which, e.g.,
electricity smart grids can be coordinated with the utilisation of renewable energy for other purposes than
electricity production.

In the tool, renewable energy is converted into energy carriers such as electricity, heat, hydrogen, synthetic
gases and biofuels, as well as energy conservation and efficiency improvements, such as combined heat and
power (CHP) and improved efficiencies, e.g., in the form of fuel cells. All such measures have the potential
for replacing fossil fuels or improving the fuel efficiency of the system. The systems relevant in the long term
are those in which such measures are combined with energy conservation and system efficiency
improvements. As a consequence, the EnergyPLAN tool does not only calculate an hourly electricity balance,
but also hourly balances of district heating, cooling, hydrogen and natural gas, including contributions from
biogas, gasification as well as electrolysis and hydrogenation. The EnergyPLAN tool also provides a numer of
options for energy storages, including storages for electricity (batteries, hydro, etc.), heating, hydrogen,
various types of gases and liquid fuels. These storages are used in the tool for optimizing the hour-by-hour
operation of the entire energy system based on the installed storage capacities, demands, etc. For example,
the district heating storages are utilised in the model for storing heating in the periods where production
exceeds demands, which typically occurs during the summer. Additionally, it is worth noticing that the
seasonal storages that are analysed for solar thermal do not provide a storage opportunity for other heating
production units such as CHP plants and boilers.

A complete overview of the energy flows, technologies, and regulation strategies in the EnergyPLAN tool are
outlined in Figure 11.

The EnergyPLAN model includes hour-by-hour data for a number of demand profiles such as electricity,
individual heating, district heating and renewable sources for one year. This allows for a high-resolution
analysis of the integration of intermittent renewable energy sources such as solar thermal. The renewable
sources are included in the model as an aggregate production for the country. In addition, cost data are
included in terms of investments, operation and maintenance, lifetimes, fuel costs, CO; costs and interest
rates which is crucial when analysing the socio-economic costs of an energy system. No residual value is
included in terms of the lifetimes of each technology.
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Figure 11. EnergyPLAN energy flows, technologies, and regulation strategies.

The EnergyPLAN tool optimizes the operation of the energy system for one year and does not optimize the
installed capacities of the energy technologies. Instead, this is defined by the user as the input values for
production units, storages, etc. and might be altered through a number of simulations.

The model can optimize the operation of the system in two ways:
e Technical simulation strategy
e Market economic simulation strategy

The technical simulation strategy optimizes the operation of the system in terms of energy efficiency with
the aim of reducing the fuel consumption. The market economic simulation strategy optimizes the system in
terms of costs and relies to a higher degree on electricity markets and electricity exchange between
countries. In the energy system analysis using EnergyPLAN in this report technical simulation strategy number
2 has been selected as this allows for a more transparent analysis of the impacts of installing solar thermal.
If a market economic simulation strategy was selected other factors such as electricity markets and exchange
could potentially influence the operation of the system thereby prioritizing other technologies in cases where
it is cheaper to import electricity than to produce it domestically. This could change the operation of
technologies such as heat pumps and CHP plants. In addition, it is uncertain what future energy markets will
look like when a higher share of intermittent renewable sources is implemented.
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4 Data

This chapter contains a description of the various data inputs used in the analysis of the future energy systems
and in the development of cost curves for heat savings in Germany, Austria, Italy and Denmark.

4.1 Data for national energy systems

This section describes and documents the replication of the national energy systems of Germany, Austria,
Italy and Denmark in the energy systems analysis tool EnergyPLAN.

In order to develop national energy systems a significant amount of data has to be collected and organized
to meet the modelling demands. This chapter describes the types of data required, the data collection and
data management.

Energy systems consist of multiple types of demands, production profiles, capacities, efficiencies, etc., which
makes data collection and management crucial for developing energy models of national energy systems. In
this project, the most significant data types collected can be divided into two sections: data for creating
models of the existing energy systems and data for future energy systems. The most significant data types
include:

Existing energy systems:

e Energy demands for all energy sectors (electricity, heating, cooling, transport, industry)

e Energy generation data including capacities, efficiencies, operation hours and fuel distribution
e Energy storage capacities

e Energy generation hourly distribution profiles aggregated for each country

e Energy system costs in terms of investments, operation & maintenance, lifetimes, fuel and electricity
costs, interest rate

Future energy systems:

e Energy demand development

e Electricity generation capacity development

e Potentials and costs for district heating expansion

e Potentials and costs for energy savings

e Potentials for electrification of industry, heating and transport
e Renewable energy potentials

In the analysis only the energy demands that are actually met are included, i.e. the model does not include
heating or cooling demands that could potentially be supplied to improve comfort levels. This might
somewhat alter the future energy demands, but is difficult to project for the future.

In order to create the 2010 reference models a variety of data is collected from a number of sources. In
general, the data required can be grouped into the following categories:

e Energy demand and supply data
e Hourly distribution data

e Cost data
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4.2 Energy demand and supply data

In the project it was decided to rely on the local experts in the Task group to collect and assess data for each
country, i.e. local experts from Austria was responsible for collecting the necessary data for Austria and
similarly for Germany and Denmark. However, no local expert from ltaly was part of the Task group and
hence data was gathered from previous projects for the Italian energy system.

For the German 2010 model a large share of the data was collected from the German Federal Ministry for
Economic Affairs and Energy (BMWi) in the 2015 version of the “Zahlen und Fakten Energiedaten”. In this
publication energy demand data for various sectors, heat production, energy production and emissions were
reported and covered a large share of the data requirements. Other data sources include e.g. the Power Plant
List published by the Bundesnetzagentur (Federal Network Agency for Electricity, Gas, Telecommunication,
Post and Railways) under the Federal Ministry of Economics and Energy, emission data from the German
Federal Environment Agency as well as data already collected by Fraunhofer ISE for other projects regarding
the future energy transition in Germany [3].

For the Austrian model the main source for creating the 2010 model was the national energy balance [4]
providing various types of input data. Current electricity system capacities for larger sources are from [5] and
for renewables from [6] while electricity grid data is from [7]. The heating and cooling in buildings is from the
Invert/EE-Lab database, where the most recent version is presented in [8]. The district cooling data is from
[9]. Industrial excess heat in district heating for the current system and future potentials are from [10]. Wind
energy and electricity distribution data is taken from [7], while the district heating hourly data is based on
measured data from 3 existing district heating systems with different sizes; the weighted average is built to
derive the profile for one “typical” size in Austria. The electricity prices are downloaded from [11]. The future
potentials for district heating and renewable energy in Austria are based on [12] and [13].

The Danish 2010 model was primarily created based on data from the Danish Energy Agency and is a
continuation of the model that was created for the CEESA project, where the initial national 2010 model of
Denmark was developed [14]. An elaborate description of data sources can therefore be found here.

For Italy no local expert was part of the project and hence data for the Italian 2010 model are from the
STRATEGO project where a 2010 model was developed for analysing the heating sector. Main data sources
for this model was [15] and [16]. More details about the data sources for the Italian model can be found in
[27].

4.2.1 Hourly distribution data

The EnergyPLAN model is an hourly model accounting for every hour in a single year. In that regard data
about demands and production patterns are required for a number of technologies and demands. The
distributions are aggregated temporal profiles for each country based on either measured historical data or
own calculations based on factors such as solar irradiation, degree days, etc. The distributions necessary in
EnergyPLAN are listed below.

e Heatdemand
o District heating
o Individual heating (non district heating areas)
e Electricity demand
e Cooling demand
e Renewable electricity
o Onshore wind power
o Offshore wind power
o Solar PV
o Hydro power
o River hydro
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Solar thermal
o Individual heating
o District heating

e Electricity Exchange

e Transport demand

e Electricity market prices

Some of these distributions such as for electricity market prices are based on measured data from the
reference year, while other distributions are based on calculations. The latter is the case for some of the
renewable energy distributions. For few of the distributions it was not possible to create these based on local
data as this was not available in the country. Hence, neighbouring country distributions were used if
available. This applies for example for the Austrian cooling demand and solar thermal distribution where no
local data was available and hence the German distributions were applied for Austria.

4.2.2 Cost data

The primary data source for the costs applied in the scenarios are from the EnergyPLAN cost database that
has been built over a long timespan for numerous projects. Data in the cost database is updated on a
continuous basis and further information about the database can be found in [18] and in Appendix A.

The fuel prices assumed in the analysis for 2050 are outlined below in Table 1.

Table 1: Fuel prices assumed for the analysis for 2050. Source: [18].

2015- Coal Natural Fuel Diesel fuel/ Gas Petrol/ Straw/ Wood Energy
€/GJ gas oil Qil JP1 chips Crops
34 12.2 16.1 20 20.6 6.3 8.1

These fuel prices might be rather high compared to today’s fuel prices. However, fuel prices are found not to
be decisive for the findings in the report, a more detailed breakdown of the fuel price impact is included in
section 7.4.1. Moreover, no changes to biomass prices have been included despite of increasing biomass
demands in the scenarios.

The CO,-prices assumed in the analysis are outlined in Table 2 below.

Table 2: CO,-costs assumed in the analysis. Source: [19].
CO,-costs €/t 2010 2050
28.6 46.6

4.3 Solar concepts

Five different solar concepts have been selected for analysis in this report. In total seven solar concepts are
defined in the Subtask C report entitled “C1: Classification and benchmarking of solar thermal systems in
urban environments” and afterwards five of these have been selected and interpreted for modelling
purposes. This section outlines the characteristics of each of the five solar concepts along with the technical
and economic details for the concepts. In addition, summary tables of the solar concepts can be found in
Appendix B —solar thermal benchmark figures.

In general, the five concepts are divided into three types:

e A:Solar thermal systems in single and multi-family homes
e B: Roof-mounted solar thermal systems connected to (block) heating grids
e C: Ground-mounted solar thermal systems connected to (district) heating grids

Two systems were selected for further analysis from types A, one system from type B and two systems from
types C. The systems that are selected have been defined as five different solar thermal concepts. These
concepts are described in Table 3.
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Table 3: Solar thermal concepts selected for analysis in the country analysis.
Concept 1: CS-SFH

Solar-combi systems in single family houses.

Solar thermal system providing heating for both domestic hot water and space heating in single-family
houses. These systems can be found in multiple countries.

Picture source: AEE INTEC

Concept 2: CS-MFH
Solar-combi systems in multi-family houses.

Solar thermal system providing heating for both domestic hot water and space heating in multi-family
houses. These systems can be found in multiple countries.

Picture source: AEE INTEC

Concept 3: BH-DE
Solar assisted heating of building blocks and urban quarters (roof-mounted collector field).

Solar thermal system, typically roof-mounted, supplying heating for a building block. Typical countries are
Austria and Germany. Storage type is tank thermal energy storage.

Picture source: ZAE Bayern

Concept 4: SDH-DK Diurnal

Solar assisted district heating (ground mounted collector field) with diurnal storage.
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This solar thermal system can be either ground or roof mounted and is typically accompanied by diurnal
tank thermal energy storage. Exsting systems can be found in Denmark, Austria and Germany.

Picture source: Seeby Varmevaerk

Concept 5: SDH-DK Seasonal
Solar assisted district heating (ground mounted collector field) with seasonal storage.

This solar thermal system is based on ground mounted collectors and has seasonal storages in the form of
pit thermal energy storage. Current examples can be found in Denmark.

Picture source: Vojens Fjernvarme

Some of the main characteristics for each of the concepts can be found in Table 4. The data is based on an
extensive data collection process of existing solar thermal plants and the data represents average values of
a large number of plants. More information is available in [20].
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Table 4: Key characteristics of the five solar thermal concepts based on inputs from [20].

Solar concept Unit Concept 1 Concept 2 Concept 3 Concept 4 Concept 5
characteristics (CS-SFH) (CS-MFH) (BH-DE) (SDH-DK (SDH-DK
Diurnal) Seasonal)

Type of solar FPC FPC FPC FPC FPC
collector
Solar fraction % of heating 20% 15% 50% 12% 50%
(annual) demand

covered
Type of storage TTES* TTES* TTES* TTES* (non- PTES*

(pressurized) (pressurized) (pressurized) pressurized)

Peak capacity kw 13 70 3,500 7,000 35,000
per unit
Production per MWh/year 5.9 39.5 1,500 4,100 17,500
unit
Solar energy kWh/year/m? 330 400 300 410 365
yield** gross
Specific cost 1,000 €/m? 0.76 0.66 0.64 0.24 0.29
(ready gross

installed, excl.
VAT/subsidies)

Fixed O&M €/m? 6.1 5.5 4.0 1.7 2.0
gross/year

Variable O&M €/m? 1.2 1.4 1.1 1.5 1.3
gross/year

* TTES = Tank Thermal Energy Storage, PTES = Pit Thermal Energy Storage

** The solar yields are based on the countries where these solar concepts are typically installed. For example, are the solar district
heating plants based on yields for Denmark while the block heating plants are based on German yields.

An elaborate description of the concepts is available in the Subtask C1 report as well as in the summary tables
in Appendix B — solar thermal benchmark figures.

The production data has been compared with the investment prices for different countries due to the
different solar yields for the four countries. A heating unitinvestment cost is given in Table 5 for each concept
and country for both 2010 and estimates for 2050. The heating unit costs are estimated to decrease around
25-35% for the various solar concepts going towards 2050 compared to the current costs. This is based on a
previous study about small-scale systems in Austria where it was found that these technologies experienced
a cost reduction of average 1.3% between 1997 and 2010 [21]. Based on inputs from project partners in
Subtask C and considering that the cost reduction potentials might be slightly lower for larger systems it is
estimated that cost reductions around 0.7-1.0% between 2015 and 2050 could potentially take place. This
results in an overall reduction of 25-35% depending on the solar thermal technology.
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Table 5: Solar heating unit costs in 2010 and 2050 for the five solar concepts.

Solar thermal heating unit Germany Austria Italy Denmark
costs (million €/TWh annual
yield)
Concept 1 (CS-SFH) 2303 1888 1686 2421
Concept 2 (CS-MFH) 1650 1353 1208 1735
2015 Concept 3 (BH-DE) 2133 1749 1562 2243
Concept 4 (SDH-DK Diurnal) 559 458 409 588
Concept 5 (SDH-DK 762 625 558 801
Seasonal)
Concept 1 (CS-SFH) 1515 1242 1109 1593
Concept 2 (CS-MFH) 1125 923 824 1183
2050 Concept 3 (BH-DE) 1500 1230 1098 1577
Concept 4 (SDH-DK Diurnal) 419 344 307 441
Concept 5 (SDH-DK 578 474 423 608
Seasonal)

5 The energy systems of Germany, Austria, Italy and Denmark

This chapter contains a description of the 2010 and 2050 models. Firstly, the methodological considerations
about developing the 2050 models are described followed by a validation of the models to ensure that the
EnergyPLAN tool is able to replicate the existing energy systems to a satisfactory degree. Finally, the models
are described in terms of their energy systems characteristics.

5.1 Development of the 2050 models

The scenarios developed in the project have a scope towards 2050 as radical changes are required to take
place if a high-renewable energy system is to be achieved. Therefore, a 2050 BAU (business-as-usual)
scenario was created for each of the four countries serving as a starting point and as comparison to the
alternative scenarios. These BAU scenarios indicate what a future 2050 energy system could look like if we
continue using energy in a similar way as we do currently. The 2050 BAU scenarios were created on the basis
of the 2010 reference models, but with adjusted energy demands, adjusted electricity generation capacities
and adjusted costs according to current expectations. The European Commission projections were used for
all the countries as a guideline regarding expectations for the future energy systems [15].

5.1.1 Adjusted energy demands

The adjustments implemented in the 2050 BAU scenarios include projections of the energy demands in a
number of sectors including electricity, individual heating and district heating, transport, industry and
cooling. The largest energy demand changes occur in the electricity sector where demands grow by up to
30% in Italy compared to the 2010 demands. For the other sectors the demands remain more or less constant
compared to the 2010 demands, except for in Germany where all sectors, but the electricity sector, is
expected to decline compared to 2010.
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Table 6: Changes in energy demand between the 2010 models and the 2050 models.

Energy demand change (%) Germany Austria Italy Denmark
Electricity demand* 12 28 36 26
Individual heating -15 -1 -1 -3
District heating** -4 -4 -3 -2
Cooling -8 -1 0 -2
Industry*** -19 -1 6 11
Transport -22 1 1 0

* Electricity demand includes final consumption (e.g. electric heating, individual heat pumps, Centralised heat pumps,
centralised electric boilers, PHES pumps, electric vehicles), own use (industries) and electricity losses

** District heating demand includes own use (industries), residential and services, industry and heat losses

*** |Industrial demand includes fuel for main product, own use and non-energy use

The energy demands for both 2010 and 2050 are listed for each country in Table 7. This gives an indication
of the size of the energy system as e.g. the German energy demands are between 10-20 times higher than
the Danish energy demands.

Table 7: The energy demands in the 2010 models and the 2050 models for each country.

Energy demands (TWh) Germany Austria Italy Denmark
2010 2050 2010 2050 2010 2050 2010 2050

Electricity 615 677 70 92 392 512 36 46
Individual heating 725 613 62 62 370 367 23 22
District heating 131 125 22 21 26 26 32 31
Cooling 9 9 2 1 49 49 0* 0*
Industry and other 694 564 88 87 451 479 52 58
Transport 692 547 91 92 520 523 70 70

* No data was available for cooling in the Danish energy system when the models were developed.

5.1.2 Adjusted electricity generation capacities

The projections for the 2050 energy demands indicate that the largest demand changes will occur in the
electricity sector. This is the reason why the electricity production capacities for the technologies in the
energy system also are projected towards 2050 according to the European Commission projections [15]. The
changes to electricity production capacities are outlined in Table 8 below. The condensing power plants
decrease in capacity while the CHP plants increase. The largest growth rates are found for renewable sources
such as wind power and PV.

Table 8: The changes assumed for electricity supply technologies between the 2010 and the 2050 models. A negative value assumes
that the capacity decreases while a positive value indicates a growing capacity.

Electricity production capacity changes (%) Germany Austria Italy Denmark
Condensing power plants -2% -39% -37% -44%
Centralised CHP 42% -20% 29% -3%
Nuclear power plants -100% - - -
Geothermal power plants >2000% 10% 96% -
Wind power plants 229% 595% 434% 172%
Hydro power plants (excluding pumped hydro) 69% 14% 10% -
Solar PV 329% >2000% 1298% >2000%

Some of the technologies have growth rates higher than 2000%, which is both due to the large increases
expected and because the 2010 capacities in many cases are almost negligible.

The actual capacities for the 2010 reference and the BAU 2050 models are listed in Table 9 below. The 2050
capacities indicate that the thermal capacities (power plants and CHP plants) decrease in all the countries
except in Germany. The increase in Germany might be caused by the decommissioning of all nuclear plants
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and hence other forms of capacity is required. In addition, significant increases in wind and PV capacities are
expected even with the current policies and trends and will grow by more than 100% in all the countries. The
capacities for industrial production and waste incineration are assumed to remain constant as no data was
provided for these technologies. Furthermore, the fuel mix in the thermal plants in 2050 is assumed to be
the same as in 2010 for each of the countries. The fuel mix assumed for the thermal plants will impact the
fuels replaced when installing renewable technologies such as solar thermal.

Table 9: The electricity production capacities in the 2010 and the 2050 models.
Electricity production Germany Austria Italy Denmark
capacities (MW)

2010 2050 2010 2050 2010 2050 2010 2050
Condensing power plants 35,545 34,888 1,670 1,010 58,261 36,674 5,022 2,795

Centralised CHP 50,055 71,311 5,761 4,618 17,443 22,587 2,500 2,421
Nuclear power plants 21,500 0 0 0 0 0 0 0
Geothermal power plants 50 510 0 0 728 1,429 - -
Wind power plants 27,400 89,901 1,014 7,042 5,814 31,042 3,802 10,354
Hydro power plants 3,200 6,501 14,921 13,823 21,521 23,688 - -
(excluding pumped hydro)

Solar PV 17,900 79,759 95 3,566 3,484 48,694 7 767

5.1.3 Adjusted cost data

The costs are projected towards 2050 as some technologies are expected to improve resulting in lower costs.
This is particularly the case for some of the renewable technologies that will reduce the investments costs,
but projections have also been made for thermal plants, storage technologies, etc. The cost assumptions for
2010 and 2050 are outlined in Appendix A — cost database.

5.2 Calibration of the 2010 and 2050 models

After collecting the data required to develop the 2010 and 2050 models for the four countries a calibration
process was carried out to ensure that the EnergyPLAN model was able to replicate the existing energy
systems to an acceptable degree. This calibration process is depicted in the figures for Germany and Austria
below. The Italian and Danish 2010 models have already been calibrated in other projects [22][23].

The first indicator is the primary energy supply which summarises all the energy sectors into a single
indicator. Hence, if the data align for this indicator it is likely that the model to some degree is also aligned
for all the individual sectors as well. The categories used for comparison with the 2010 reference models
differ between Figure 12 and Figure 13 for Germany and Austria depending on the categories defined by the
statistical agencies.
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Figure 12: The Primary Energy Supply in the German 2010 reference compared to statistics from 2010
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Figure 13: The Primary Energy Supply in the Austrian 2010 reference compared to statistics from 2010

A similar exercise has been carried out for electricity production in the 2010 reference models. This is crucial
since the electricity production is optimised on an hourly basis by EnergyPLAN and this has to align to the
annual statistical data. Hence, in these figures it is possible to compare the aggregate hourly production in
EnergyPLAN with the annual data from the statistics.
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Figure 14: The electricity production in the German 2010 reference compared to statistics from 2010
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Figure 15: The electricity production in the Austrian 2010 reference compared to statistics from 2010

Also for the heating production a calibration has been performed as indicated on Figure 16 and Figure 17.
EnergyPLAN optimises the production of district heating from CHP plants and district heating boilers, which
is the reason for the difference for the district heating boilers between the 2010 model and the statistics.
The solar thermal production for individual households differ from the statistics, but this does not impact the
subsequent analysis since the marginal analysis investigates the impact of installing the first TWh of solar
thermal. Hence, the solar thermal installed in 2010 is removed from the model and afterwards 1 TWh of solar
thermal is installed in order to make the results comparable across the different countries.
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Figure 16: The heat production in the German 2010 reference compared to statistics from 2010
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Figure 17: The heat production in the Austrian 2010 reference compared to statistics from 2010

Finally, also the Carbon Dioxide Emissions in the 2010 references have been compared to the 2010 statistics
for validation. It shows minor differences which can be related to the CO,-emissions assumed in the model
from different fuels and the actual CO,-emissions. For example, EnergyPLAN assumes a single value of CO;
from coal consumption while in reality this value consists of various types of coal that all impact the total
CO,-emissions.
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Figure 18: The Carbon Dioxide Emissions in the German and Austrian 2010 references compared to statistics from 2010

Overall, the EnergyPLAN 2010 reference models show a satisfying degree of replication of the 2010 energy
systems and will accordingly be used for further modelling of the 2050 scenarios.

5.3 Energy system scenarios for 2010 and 2050

In this chapter the 2010 and 2050 models are presented for the four countries in terms of primary energy
supply, electricity production, heat production, carbon dioxide emissions as well as socio-economic costs.
The models are firstly presented in terms of their national fuel shares and secondly compared in terms of the
demand or supply per capita.
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The demographic projections assumed are based on Eurostat data. In the study no considerations of
urbanization have been considered directly, but it could be argued that this is part of the analysis when
expanding the district heating networks, which typically takes place in the cities.

Table 10: Population in the four countries in 2010 and projected for 2050 [24].

Population Germany Austria Italy Denmark
(million)

2010 81.80 8.35 59.19 5.53
2050 81.80 9.75 67.06 6.42
Change (%) 0%* 16.7% 13.3% 15.9%

* According to the Eurostat projections the German population will decline by more than 7% towards 2050. However, this was agreed
to be unrealistic between the project partners and it was therefore decided to assume a similar population in 2010 and 2050.

According to the Eurostat projections population will increase by around 15% in Austria, Italy and Denmark
towards 2050 while it was decided to keep the German population at a level similar to 2010. This tendency
can also be seen in the expected energy demands as presented in the next section.

5.3.1 Primary Energy Supply

Table 11: The total primary energy supply in 2010 and 2050 for the four countries.
Primary Energy supply (TWh/year) Germany Austria Italy Denmark
2010 2050 2010 2050 2010 2050 2010 2050
3817 3130 376 374 2077 2367 250 265

The most common type of primary energy in the four countries is oil, except in Italy where natural gas covers
a larger share of the national fuel demand. In all the countries more than 60% of the total fuel is fossil fuels
in the forms of coal, oil and natural gas and in Italy this fossil fuel share is more than 85% of the total fuel in
both 2010 and 2050. Nuclear power only exists in Germany in the 2010 reference while it is expected to be
decommissioned by 2050. Austria meets more than 10% of its energy demands through hydro power
production and also has a similar share of biomass. In Denmark wind power covers around 4% of the primary
energy and is expected to increase to around 9% in 2050. The solar thermal shares are negligible in all
countries for both individual heating and district heating.
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Figure 19: The proportion of primary energy supply in the energy systems in the four countries in the 2010 and 2050 models.
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When considering the primary energy supply per capita the four countries show rather similar demands
within a range of 35-45 MWh/capita/year. The most fuel intense countries per capita are Denmark and
Germany while Italy has the lowest fuel consumption per capita in both 2010 and 2050.
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Figure 20: The primary energy supply per capita for the different countries in the 2010 and 2050 models.

5.3.2 Electricity production

Table 12: The electricity production in 2010 and 2050 for the four countries.
Electricity production (TWh/year) Germany Austria Italy Denmark
2010 2050 2010 2050 2010 2050 2010 2050
616 679 82 92 392 510 37 49

In terms of the electricity production mix in the four countries significant differences can be found. In
Germany around 65% of the electricity is produced from thermal plants and industries in 2010 and 2050.
However, in 2010 around 20% of the total electricity is produced from nuclear while this is replaced by
renewable electricity production from wind and solar power in 2050. The thermal production share in Austria
is around 45% in 2010 and decreases to 35% in 2050. Austria has a large hydropower potential available
producing around 50% of the total electricity production. Wind power also grows substantially in Austria
towards 2050. Italy is heavily dependent on condensing power plants and CHP plants to produce electricity
with more than 70% of the electricity produced from fossil fuels in these plants. In 2050 the wind power and
PV share increases, but is still only around 15% of the total electricity production. Denmark has the highest
share of wind power amounting to 25% in 2010 and approximately 50% in 2050. The thermal production
from CHP plants reduce due to lower operation times because of increased wind power.
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Figure 21: The proportion of electricity production from various technologies in the four countries in the 2010 and 2050 models

The electricity production per capita is 6-10 MWh/capita/year in 2010 and is expected to increase towards
2050 in all countries. Austria has the highest production per capita which indicates that the energy system to
a larger degree is based on electricity than in the other countries.
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Figure 22: The electricity production per capita for the different countries in the 2010 and 2050 models
5.3.3 Heat production

Table 13: The total heat production in 2010 and 2050 for the four countries.
Heat production (TWh/year) Germany Austria Italy Denmark
2010 2050 2010 2050 2010 2050 2010 2050
883 766 86 85 399 395 47 45
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The largest differences between the countries regarding heat production is the share of individual heat
supply and district heating. The district heating production shares are around 20% for Germany, 30% for
Austria, 8% for Italy and 50% for Denmark. District heating can be produced in numerous ways and for
example in Italy a large share of the district heating production is for industrial purposes. The availability of
district heating systems also influence the types of technologies that are possible to integrate in the systems.
This can for example be seen in the Danish energy system which has a much higher share of CHP and waste
incineration plants compared to the other countries.

In Austria and Denmark 15-20% of the total heating is produced from biomass boilers in individual heating
areas while Italy has a high reliance on natural gas covering more than 65% of the total heat production. Solar
thermal shares are low around 1% in Germany and Austria when accounting for solar thermal for both district
heating networks and individual houses. In the 2050 models no solar thermal has been included as these are
used as the basis for the analysis in section 7 where the impact of installing the first TWh of solar thermal is

investigated as well as extreme scenarios with a high solar thermal share.
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Figure 23: The proportion of heat production from various technologies in the four countries in the 2010 and 2050 models. HH =
Households/individual supply.

The heating production per capita reveals that the highest demands can be found in Germany followed by
Austria and Denmark. Italy has the lowest heating production per capita. Factors that influence the heating
production in the countries are e.g. climate, building standards and consumer habits (for example the desired
living room temperature). Also, the heat production is influenced by the heating demands and the efficiency
in the system as some technologies such as heat pumps can have higher efficiencies than conventional
boilers. For all countries the heat production per capita decreases between 2010 and 2050.
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Figure 24: The heat production per capita for the different countries in the 2010 and 2050 models.

5.3.4 Carbon Dioxide Emissions

Table 14: The total carbon dioxide emissions in 2010 and 2050 for the four countries.

Austria Italy Denmark

2010 2050 2010 2050 2010 2050

Carbon Dioxide Emissions (Mt/year) Germany
2010 2050
803 697

68 64 461 518 54 52

The carbon dioxide emissions associated with the energy systems vary significantly in terms of total amounts,
but when measured per capita the emissions are between 8-10 t/capita/year. The carbon emissions per
capita is impacted by factors such as energy demands on one side and supply technologies and fuels on the
other side. When these are combined the differences between the countries are rather limited. Austria is
projected to experience the largest decrease in emissions per capita towards 2050 due to a higher share of

renewables and a reduced heating demand.
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Figure 25: The total energy system carbon dioxide emissions and the emission per capita for the different countries in the 2010
and 2050 models.

5.3.5 Socio-economic costs

Table 15: The total socio-economic costs in 2010 and 2050 for the four countries.
Socio-economic costs (Billion €/year) Germany Austria Italy Denmark
2010 2050 2010 2050 2010 2050 2010 2050
456 465 38 42 282 330 25 28

The socio-economic costs are divided between investments, operation and maintenance, fuels, CO, and
electricity exchange. The proportions between the countries are rather similar with investments being
around 35-40% of all costs, operation and maintenance 20-30%, fuel costs are 25-35% of the total costs while
CO; costs are around 5-10%. These total energy systems costs include costs for vehicles.
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Figure 26: The proportion of socio-economic costs in the energy systems in the 2010 and 2050 models, including vehicle costs.
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The largest cost in the energy system are the vehicle costs that are responsible for between 40-55% of the
entire costs in the energy systems based on the vehicle cost assumptions presented in Appendix A — cost
database. The largest cost share of vehicles are in Germany and Italy around 55% while the costs in Austria
and Denmark are just above 40% of the total costs.
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Figure 27: The total vehicle costs in the four contries along with the proportion of vehicle costs compared to the total energy
system costs in the 2010 models.

When comparing the number of vehicles per capita across the countries it is clear that Italy has the highest
number of vehicles per capita. This is also reflected in Figure 27 as indicated by the vehicle costs as a share
of the total costs.
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Figure 28: The number of vehicles in each country along with the number of vehicles per capita in 2010.

The socio-economic costs have also been calculated excluding the vehicle costs since they are such a high
proportion of the total costs. When excluding vehicle costs the fuel cost share grows significantly and is now
between 50-60% of the total costs in the various energy systems in 2010 and 2050.
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Figure 29: The proportion of socio-economic costs in the energy systems in the 2010 and 2050 models, excluding vehicle costs.

The cost proportions are rather similar, but if the costs per capita are compared some differences are visible.
The highest costs per capita in both 2010 and 2050 can be found in the German system with total costs
around 5,500 €/capita/year when vehicle costs are included. The three other countries have costs around
4,000-5,000 €/capita/year. The same costs would be around 2,500-3,000 €/capita/year when excluding the
vehicle costs.
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Figure 30: The socio-economic costs per capita for the four countries in 2010 and 2050, including vehicle costs.
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6 Developing high renewable scenarios

This report analyses the role of various types of solar thermal systems in future energy systems under
different conditions for four countries. These varying conditions are created through developing a number
of energy system scenarios in which solar thermal potentially could play a role. Concretely, the scenarios in
which solar thermal is analysed is based on five energy system models for each country; a 2010 model, a
2050 model continuing the trends of today, a 2050 scenario with focus on heat savings, a 2050 scenario with
focus on heat savings and district heating and finally a high-renewable scenario where only the transport
sector consumes fossil fuels. These scenarios have been created for all four countries to investigate whether
the system design and energy resources available also influences the potential role of solar thermal in the
future. The key purpose of these scenarios are therefore to create various conditions in which solar thermal
is analysed rather than to create optimal pathways to a high-renewable scenario for the future. Also, the
steps do not necessarily reflect how the implementation of a high-renewable energy system might be
created, as no time aspect is included in the steps. The scenarios reflect a future snapshot of what a high-
renewable system might look like around 2050.

The high-renewable energy systems are developed through a number of steps, starting from the 2050 BAU
models of each country. These steps build on top of each other so that the second step also implements the
measures from the first step and so on. This means that the last steps build on top of a number of previous
steps and measures to form the final high-renewable scenarios.

The scenarios developed are:

1. 2010 model: A system reflecting the current energy systems

=>» Solar thermal analyses in the 2010 model
2. 2050 model: A BAU system continuing the current trends

=>» Solar thermal analyses in the 2050 model
3. Heat Savings: Savings in individual heating and district heating areas

=>» Solar thermal analyses after heat savings
4. District heating: Investigations of expanding the district heating network

=>» Solar thermal analyses after changes in heat supply

Individual heating: Comparison of various individual heat supply options
Renewable heating: Integration of renewable heating sources other than solar thermal
Transport: Electrification of cars
Industry: Changes in industrial sector through electrification and conversion to biomass
Renewable electricity: Integration of renewable electricity
10. High-renewable: Changes in remaining sectors to biomass

=>» Solar thermal analyses in high-renewable systems

W Nw

The measures in each step as well as the results of implementing these measures are described in the next
sections.

6.1.1 Step 1: Heat savings

The first step initiates from the 2050 BAU model and contains a reduction of space heating demands through
savings in buildings supplied by both individual heating and district heating. The feasible saving levels are
determined according to the economic system impact of the savings, i.e. a certain share of heat savings is
selected if the energy system costs are lower than for the alternative saving levels. The heat savings are
analysed in levels of 10% and is based on the heat saving costs presented in Figure 31 and Figure 32. The
source for these heat saving costs and potentials is the Subtask A report about heat savings cost curves.
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The additional investments due to heat savings increases along with the growing saving shares as the
cheapest saving options are selected first. It is assumed that the savings are distributed evenly to all types of
supply technologies, i.e. 10% heat savings will reduce the heat demand 10% for all buildings with natural gas
boilers, oil boilers and district heating supply.

Only existing buildings are included in the saving levels as the share of new buildings towards 2050 are
assumed to be insignificant compared to the share of the existing building stock still existing in 2050.
Furthermore, the new buildings have significantly higher costs for renovations compared to renovations in
the exsting buildings that are not being demolished, see Figure 31.

0,20

All countries

0,18 +— — existing and new buildings

014

012 / == Germany Existing

Germany New

Denmark Existing
0,10 +—— —

Denmark New

e AUstria Existing
0,08 +——7 Austria New
// e |taly Existing

Nl / talyNew

additional heat saving costs per energy unit [€/kWh]

i /j J
I_ /———"‘ /
0,02 - ;—_
0,00 4 : : : : : ; ; )
0% 10% 20% 30% 40% 50% 60% 70% 80%

cumulated heat savings [% of total 2050 demand]

Figure 31: Heat saving costs for existing and new buildings in each country measured in additional investments per energy saved.
The heat savings are analysed by changing following inputs for the modelling in each country:

e Heat demands are reduced evenly for all heat supply technologies.

e Additional investments required to carry out the heat savings.

e The number of heating units remain constant despite a lower heat demand (lower heat demand
per building).

e Investment prices in heating units decrease by the same ratio as the saving level implemented, i.e.
10% heat savings results in 10% lower investment prices for boilers, district heating substations,
etc.

e District heating production capacity is reduced when carrying out heat savings.

e Space heating demands are reduced while the domestic hot water demand remains constant.

e The distribution of the hourly heating demands are changed resulting in a lower peak demand
during winter.

Changes in heating and cooling demands due to climate change and changes to the number of heating and
cooling degree days have not been considered in the analysis.
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The total costs for building renovations increase as the share of heat savings increase, see Figure 32. This
means that there is a certain point where it is more economical to produce heating rather than to continue
to save heating, see also [25]. Heat savings affect multiple areas of the energy system and it can be difficult
to measure impacts on other sectors such as the electricity sector. Hence, the heat savings are analysed in a
full energy system perspective applying the energy system analysis tool EnergyPLAN previously described.
This allows for quantifying the impacts for the entire energy system.

The accumulated heat savings costs are presented in Figure 32 for the four countries. These curves form the
basis for calculating the additional investments required to achieve a certain heat saving level.
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Figure 32: The accumulated heat saving costs as a share of the 2050 heat demand for the four countries

In Figure 36-Figure 36 the results of various heat saving level simulations for the four countries are outlined.
It was chosen to use 50% heat savings for Germany, 40% heat savings for Austria and 40% heat savings for
Denmark as these were found to be the options with the lowest socio-economic costs for the energy system.
For Italy however, the costs continued declining as more heat savings were installed. Therefore, it was chosen
for Italy to use a 50% saving level as a higher level might be too difficult to achieve from an implementation
perspective. In order to achieve higher saving levels the renovation rates would need to increase significantly
compared to existing and possible renovation rates.
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Figure 33: Socio-economic costs for various saving levels for Germany. The heat saving level with the lowest energy system costs
have been selected for further analyses.
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Figure 34: Socio-economic costs for various saving levels for Austria. The heat saving level with the lowest energy system costs
have been selected for further analyses.
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Figure 35: Socio-economic costs for various saving levels for Italy. The heat saving level with the lowest energy system costs have
been selected for further analyses.
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Figure 36: Socio-economic costs for various saving levels for Denmark. The heat saving level with the lowest energy system costs
have been selected for further analyses.

In Table 16 the heat production before and after the heat savings are listed. Furthermore, the additional
investments required for the heat savings can be found for each country.

Table 16: Heat production before and after heat savings as well as the additional investments for implementing the heat savings.

Country 2050 heat Heat saving level with 2050 heat production Investments in heat
production lowest costs after savings savings
TWh/year % TWh/year Billion €/year

Germany 766 50% 383 13.8

Austria 85 40% 50.9 1.2

Italy 396 50% 198 4.4

Denmark 45 40% 27 1.2

Carrying out heat savings also impact the overall primary energy demand with a reduction between 8-13%
depending on the country, the heat saving levels carried out and the proportion of the heat sector in the
country. Also, the electricity production in the system decrease due to a lower electricity demand for heating
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with the largest electricity reduction in Austria and the smallest in Denmark. For CO,-emissions the heat
savings leads to a reduction of 5-12% of the total energy system emissions.

In Step 1 the solar thermal concepts are subsequently analysed to investigate whether heat savings impact
the potential role of solar thermal in the future. This analysis is outlined in section 7.

6.1.2 Step 2: District heating expansion

After reducing the heat demand in step 1 it is analysed how much of the remaining heat demand district
heating might supply. The feasibility of district heating expansions are compared based on both technical and
economic feasibility.

Similarly, to the heat saving levels the district heating levels are analysed in steps of 10% to find the most
cost-effective level. The district heating expansions are analysed before the integration of further renewable
sources in the district heating networks (step 4) and could potentially impact the district heating levels. This
has previously been analysed in [22] where this proved to only slightly change the district heating levels.

District heating levels are analysed by changing following inputs for the modelling in each country:

e Additional investments for piping (transmission, distribution, branch pipes).

e Additional costs for installing substations in each building converted to district heating.

e Reductions in costs for individual boiler investments in buildings converted to district heating.

e Changes in heat supply technologies affecting system efficiencies and losses.

e Adjusted district heating boiler capacity (120% of peak demand) and CHP capacity (75% of peak
demand). The latter is either a conversion of existing condensing power plants to CHP plants or the
construction of new CHP plants. CHP plants are assumed to have a similar fuel mix as in the 2050
reference scenario.

e The thermal efficiencies of CHP plants are improved for Italian CHP plants (from 12% to 40%).

Investments in piping for district heating increases per heat delivered because of the lower heat density. This
means that the costs per heat delivered is lower in city centres than in rural areas. This is reflected from
Figure 37 and Figure 38 where it is clear that the piping costs increase as the heat density reduces [22]. The
district heating network cost curves are based on geographical analysis of each country on a 1 km2 resolution.
Firstly, the location of the heat demands are estimated, followed by calculations of the required lengths for
each district heating network in areas with a sufficiently high heat density. Based on this the network costs
are estimated for urban areas and depending on the district heating share of the total heat demand [22].

The heat savings carried out in the first step might potentially affect the costs of increasing the district heating
networks as the heat demand reduces in every building. This is not taken into account in the district heating
network costs applied in the analysis, where it is assumed that the network costs are based on the 2050
reference heat demands. A methodology for including the impact of heat savings is currently under
development in [26].
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Figure 37: The district heating network costs according to the share of district heating in Italy and Germany.
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Figure 38: The district heating network costs according to the share of district heating in Austria and Denmark.

District heating impacts many areas of the energy system such as the share of CHP and the integration of
excess heating and therefore it is necessary to apply a full energy system analysis perspective. The figures
below shows the total socio-economic costs when integrating various levels of district heating in the energy
systems. In Germany the energy system costs are lowest when the heat supply is 40% district heating, in
Austria a similar share is feasible while higher shares have been identified for Italy and Denmark. The district
heating level with lowest costs in Italy is 70% while the share in Denmark is at 60%. These district heating
levels are analysed after heat savings have been carried out in step 1. Without any heat savings slightly higher
district heating shares would lead to the lowest costs.
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Figure 39: Socio-economic costs for various district heating levels for Germany. The district heating level with the lowest energy
system costs have been selected for further analyses.
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Figure 40: Socio-economic costs for various district heating levels for Austria. The district heating level with the lowest energy
system costs have been selected for further analyses.
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Figure 41: Socio-economic costs for various district heating levels for Italy. The district heating level with the lowest energy
system costs have been selected for further analyses.
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Figure 42: Socio-economic costs for various district heating levels for Denmark. The district heating level with the lowest energy
system costs have been selected for further analyses.

The feasible district heating levels all result in higher district heating shares compared to the current levels
and what is expected for 2050. Especially in Italy the district heating potential seems significant, which is in
line with [22]. Also in Germany, the district heating level might double compared to the current level while
smaller increases in Austria and Denmark seems feasible.

The feasible district heating levels depend on a number of factors with the most significant types described
below. The heat density in the country is one of the determining factors for district heating feasibility and
this is the explanation for the significant district heating expansions suggested for e.g. Italy. In Italy the
population lives rather close to eachother (in cities), which means that a small amount of district heating
networks might reach a large proportion of the heat demand. Currently, 43% of the population lives in the
10 largest cities in Italy indicating that these areas could be feasible for district heating. This number is for
example only 38% in Denmark, 30% in Austria and 13% in Germany. Current trends indicate that the
urbanisation rate will only increase in the future, which is not accounted for in the analysis. These conditions
might also impact the feasibility for district cooling, but since this is only a minor part of the energy demand
it has negligible impact on the overall energy system.



IEA SHC Task 52: Solar Thermal and Energy Economy in Urban Environments Country cases for Germany, Austria, Italy and Denmark

Furthermore, the Italian energy system has a large potential for utilizing excess heat from condensing power
plants that might be converted to CHP plants in order to utilize this excess heat. This is less costly than
building new CHP plants for district heating supply and will provide a relatively low cost solution for supplying
the new district heating areas. The high district heating potential in Italy can also be explained by the energy
system design as the Italian energy system currently only has a small share of baseload production of
electricity and heating from technologies such as industrial production, geothermal, waste incineration and
nuclear power. This means there is more space for CHP plants to produce in cogeneration mode and thereby
produce heating for district heating purposes.

Table 17: District heating shares in the 2050 scenarios and after district heating expansions.

Country District heating share District heating share with lowest District heating network
2050 cost costs
% % Billion €
Germany 19.9% 40% 24.17
Austria 27.5% 40% 1.41
Italy 7.2% 70% 29.54
Denmark 51.5% 60% 0.15

This step could potentially also impact the role of solar thermal in the future and is therefore selected as one
of the five scenarios in which the solar thermal analyses are conducted.

6.1.3 Step 3: Individual heating

After determining how much of the heat demand should be saved and what district heating levels are
feasaible the remaining heat supply is supplied by individual heating technologies. Here, three alternatives
are investigated having in mind that the aim is a high-renewable system: Biomass boilers, electric heating
and heat pumps.

The changes that are implemented when analysing the individual heating options are:

e Heat demands supplied by different technologies.

e Changes in heating unit investments when converting to a different heat supply technology.

e Adjustments in electricity production capacities due to increased electricity demands for heating
purposes.

The scenarios are rather extreme scenarios as the majority of the heat demand is supplied by a single
technology. This might not seem realistic, but enables a better comparison across the three technologies. It
is deemed unrealistic to supply all individual heating from either electric heating or heat pumps and therefore
biomass boilers are included in these scenearios. Hence, in the scenario comparisons for electric heating and
heat pumps 80% of the individual heat demand is supplied by these technologies while the remainder for the
largest part is from biomass boilers, see Table 18.

Table 18: Division between supply technologies in the three individual heating scenarios. The numbers indicate the share of the
total individual heating supply.

Technology Biomass option Electric heating Heat pumps option
option

Biomass boilers 95% 17.5% 17.5%

Electric heating 2.5% 80% 2.5%

Heat pumps 2.5% 2.5% 80%

To assess the feasibility of the three options, firstly, the economic impact on the energy systems are
compared, see the figures below.
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Figure 43: Socio-economic costs for different individual supply technologies for Germany. The costs represent the total socio-
economic costs in the energy systems when the majority of the individual heat supply is supplied by these technologies.
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Figure 44: Socio-economic costs for different individual supply technologies for Austria. The costs represent the total socio-
economic costs in the energy systems when the majority of the individual heat supply is supplied by these technologies.
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Figure 45: Socio-economic costs for different individual supply technologies for Italy. The costs represent the total socio-
economic costs in the energy systems when the majority of the individual heat supply is supplied by these technologies.
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Figure 46: Socio-economic costs for different individual supply technologies for Denmark. The costs represent the total socio-
economic costs in the energy systems when the majority of the individual heat supply is supplied by these technologies.

In all four countries electric heating is the most costly option and is therefore disregarded as a feasible
solution. In the Austrian, Italian and Danish systems biomass boilers is the least costly option while heat
pumps are preferable from an economic perspective in the German system. The primary reason for the
differences depends on the type of heating supply that is replaced.

The three options have a significant impact on the efficiency and fuel consumption in the systems. These
impacts are illustrated in Figure 47 and Figure 48.
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Figure 47: The primary energy supply for Germany and Italy when the individual heating is supplied by either biomass boilers,
electric heating or heat pumps.
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Figure 48: The primary energy supply for Austria and Denmark when the individual heating is supplied by either biomass boilers,
electric heating or heat pumps.

In all four countries heat pumps lead to a more efficient energy system consuming less primary energy and
more importantly, also reduces the biomass consumption. In later steps this becomes a key factor. Biomass
boilers increase the total primary energy consumption by 1-2% while heat pumps reduce the total primary
energy by 1-3%.

Biomass boilers increase the total biomass demand by between 30-130% which is significant taking into
consideration that this measure only relates to the individual heating sector and to a minor degree the
electricity sector. Heat pumps on the other hand increases biomass consumption up to 20% in Germany while
it decreases by 10% in Denmark. This is because the electricity production to a higher degree is based on
biomass consumption in Germany and that there are relatively few buildings relying on biomass boilers. In
Denmark the situation is opposite where only a small share of the power plants consume biomass (with the
reference 2050 created in this study) while there is a larger share of biomass boilers that can be replaced by
heat pumps to reduce the overall biomass demand. In this step no alternative electricity sources such as wind
power and PV is installed at the same time and the additional electricity demand is therefore supplied by
power plant production.

For the next steps it is decided to install 80% heat pumps in the systems as well as a share of biomass boilers
and electric heating units due to the efficiency improvements described and the reduced reliance on biomass
for heating.

6.1.4 Step 4: Renewable heating in district heating

After the first three steps the heating demands have been reduced, district heating has been expanded and
the majority of the individual heating supply is converted to heat pumps. Step 4 also deals with the heating
sector aiming at integrating a higher share of renewable sources in the district heating networks. Expanding
the district heating network enables the utilisation of excess heat and renewable sources that would
otherwise not have been possible to integrate. These sources are for example industrial excess heat, heating
from waste incineration and geothermal. A large share of these resources would be wasted or unused
without the existence of district heating networks. By introducing these renewable sources the demand for
other sources such as fossil fuels and biomass will decrease.

The changes in this step include:
e Integration of alternative heating sources in the district heating supply.
e Reductions in fuels consumed by other district heating production technologies.
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The excess and renewable heating potentials have previously been assessed in the STRATEGO project [27]
and is listed for each of the four countries in Table 19.

Table 19: The excess and renewable heating resources for district heating purposes in each country [27].

Heat source potential Waste Industrial Geothermal Excess heat from
(TWh/year) incineration excess heat conversion to CHP
Germany 44.8 157.3 1.8 (a) 549.9

Austria 5.7 23.2 3.2 (b) 17.4

Italy 11.9 94.7 20.8 (c) 244.1

Denmark 6.8 3.5 - 28.7

(a): 3], (b): [28], (c): [27]

No solar thermal technologies are installed in this step as the solar thermal feasibility is analysed separately
in section 7. In addition, the development of the district heating networks also allows for installing large-scale
heat pumps in the district heating supply mix. These can utilise excess electricity production in hours of
overproduction by converting excess electricity into heating that can be fed into the district heating
networks. Large-scale heat pumps for the district heating networks are also installed in this step.

The integration of these heating resources have been carried out taking into account the following
limitations:

e The baseload production share of the district heat supply should not exceed 35% [29].

e The supply should not exceed the potentials for each resource.

e The technologies with the lowest heating production costs have to some degree been prioritised,
see data for production prices in Appendix A — cost database.

e Security of supply in the energy system must be maintained (industries can close down or move).

Table 20 shows the heat supply mix before and after the integration of further excess and renewable heating
sources in the district heating supply mix.

Table 20: District heating supply mix divided by technologies before and after the integration of further excess and renewable
technologies

Technology shares Before integration of excess and After integration of excess and renewable
of district heating renewable sources sources
supply (%)

Germany Austria Italy Denmark | Germany Austria Italy Denmark
CHP 79 78 93 50 59 53 61 45
DH boilers 13 8 6 13 2 1 1 6
Waste incineration 4 5 1 31 13 14 10 31
Industrial excess 4 8 0 4 14 18 13 4
heat
Geothermal 0 1 0 1 4 7 7 7
Heat pumps 0 0 0 1 8 6 8 7
DH imbalance* 0 0 0 0 4 3 0 0
Baseload share 8 14 1 36 31 39 30 41
Total DH demand 180 22 154 22 180 22 154 22
(TWh/year)

* The District heating imbalance represents the share of district heating production that cannot be used in the energy system due to
a mismatch between heat supply and demand, primarily taking place in the summer period.

The share of CHP and district heating boiler production decreases in all countries as other heating sources
are introduced. These sources (waste incineration, industries and geothermal) operate as baseload
production and therefore also impacts the district heating imbalance of the systems. This results in some
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hours of the year where heat production exceeds the demands and this heat therefore has to be wasted (in
a sea, lake, air, etc.). These imbalances are however within an acceptable level for all the countries after
integrating further baseload production technologies. The baseload share in Denmark is higher than in the
other countries due to the high production of district heating from waste incineration, which has been kept
at a similar level to the current level.

The integration of these renewable and excess heating sources lead to a lower CHP production which then
has to compensated through an increased condensing power plant production. The impact on the primary
energy and CO; is therefore negligible and actutally increases slightly in Austria and Italy. This is only valid as
no alternative renewable electricity production is introduced such as wind power or PV, which takes place in
Step 7. In terms of the overall socio-economic costs there is a slight reduction in all countries as some of
these energy sources have lower costs than the production technologies they replace.

The introduction of other heating sources could possibly impact the feasible district heating levels as the heat
supply might be less costly. The impact of integrating the renewable and excess heat sources on the overall
feasible district heating levels was analysed in [22], where it was found that the change in heat supply mix
has an insignificant impact on the district heating level.

6.1.5 Step 5: Transport

The transport sector has limited impact on the feasibility of solar thermal and accordingly only few measures
have been implemented in the transport sector. This step therefore converts personal vehicles and vans from
internal combustion engines to electricity driven battery technologies. Current technology projections
indicate that battery technologies will not be realistic to install in heavy-duty transport, aviation and shipping
and therefore no changes have been conducted for these modes of transport. They are still consuming fossil
fuels similar to the situation expected in the 2050 scenario. Also other technologies for heavy-duty transport
such as eRoads are under development, but goes beyond the scope of this study [30].

The changes in this step include:

e Conversion of 75% of petrol and diesel cars to battery electric vehicles

e Conversion of 50% of vans to electric drive vehicles

e Changes in vehicle investment costs and operation and maintenance based on the conversions to
alternative technologies

e Additional investments equal to one charging station for every electric vehicle (1,000 €/vehicle)

e Increased power plant capacities due to the increase in electricity demands for transport

The fuels before and after the conversion to electric vehicles are given in Table 21.

Table 21: Transport fuel mix in the four countries before and after the conversions to a higher share of electricity

Transport fuels Before conversion After conversion
(TWh/year)
Germany Austria Italy Denmark | Germany Austria Italy Denmark
Jet fuel 78 8 48 10 78 8 48 10
Diesel 258* 63 274 41 155 38 165 25
Petrol 171 20 160 20 43 5 40 5
Natural gas 0 0 8 0 0 0 8 0
LPG 6 0 16 0 6 0 16 0
Biofuel 34 0 17 0 34 0 17 0
Electricity 9 3 11 0 84 21 88 8

* No fuels for shipping is included for Germany as this data was not available.

The reduction in oil consumption in the transport sector is replaced by a higher demand for coal, natural gas
and biomass consumed in the power plants to produce the additional demand for electricity. Due to this the

60



IEA SHC Task 52: Solar Thermal and Energy Economy in Urban Environments Country cases for Germany, Austria, Italy and Denmark

CO, emissions decrease around 3% in all the countries at the same time as the socio-economic costs also
decrease.

6.1.6 Step 6: Industry

In Step 6 the industrial sector is converted towards a higher share of renewable sources. The industrial sector
is complex to convert to renewable sources as many types of energy demands exist in this sector such as
space heating, process heating in various temperatures, cooling and electricity. Industrial demands in this
study represents production of goods in industries, but also other types of energy demands such as
lubricants, non-energy purposes, flaring of oil, etc.

The changes in this step are:

e Increase in production efficiencies for production of goods due to improved technologies. This has
previously been assessed to have a potential that may reduce the overall industrial fuel demand by
20% [31-33].

e Next, it is estimated that 15% of the total fuel demand can be electrified to reduce the depence on
solid fuels. This electricification also leads to additional efficiency gains of 20% since electrical
driven engines are more efficient [31,34].

e After gaining a higher production efficiency and electrifying a share of the solid fuels the last
measure ensures a high-renewable industrial sector. This is ensured through a conversion from the
remaining fossil fuel consumption to biomass.

These measures ensures that also the industrial sector is fuelled by a high share of renewable energy. No
additional costs have been included for these measures beyond the changes in fuel costs. Other options such
as renewable gasses, production of hydrogen and introduction of electrofuels [35] have not been studied in
further details as the focus is on solar thermal.

The industrial fuel demand before and after the measures are listed in Table 22.

Table 22: The industrial fuel mix in the four countries before and after the measures are implemented.

Industry fuels Before measures After measures
(TWh/year)
Germany Austria Italy Denmark | Germany Austria Italy Denmark
Coal 94 15 25 3 0 0 0 0
oil 210 24 252 27 0 0 0 0
Natural gas 229 34 194 24 0 0 0 0
Biomass 32 14 9 3 452 69 364 45
Additional electricity - - - - 34 5 35 4
Total 564 87 480 58 485 74 398 49

The measures carried out in the industrial sector leads to a reduction in fossil fuels, but a significant increase
in biomass consumption. The biomass demands in the industrial sectors after carrying out the measures
described are more or less similar to the total domestic biomass potentials in each of the four countries
according to the potentials in [36]. This demonstrates that there will be a substantial pressure on future
biomass resources and that further actions must be implemented in the industrial sectors. This is however
out of the scope of this study where the focus is on solar thermal analysis rather than to create the optimal
high-renewable energy system.

The measures in the industrial sector results in overall socio-economic cost reductions of 4-7% compared to
before the measures. These reductions originate from the introduction of fuels with lower costs and from
the efficiency gains assumed.
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6.1.7 Step 7: Renewable electricity supply

In previous steps the electricity demand has increased in the heating, transport and industrial sectors. In Step
7 the electricity production is converted to a higher share of renewable sources especially by integrating
more variable sources such as onshore and offshore wind power and photovoltaics. No optimal mix of these
resources have been analysed in this study.

The changes in Step 7 include:

e Installation of more variable electricity production (wind and PV).
e Enhanced capacity factors for wind power and PV to what is expected in 2050 [29]

A single data source is used for estimating the renewable potentials across the four countries in order to
ensure comparability and therefore data from the JRC (EU Commissions Joint Research Centre) has been used
for all countries. It was found that the hydropower potentials in the countries to a large degree already is

utilised and is therefore kept constant in the scenarios. The renewable production potentials are presented
in Figure 49.
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Figure 49: Renewable electricity production before and after installing additional wind power and PV. No offshore wind
potentials were identified for Austria and Italy.

The electricity production from variable renewable sources increases by between 100-270% for the four
countries. The largest potentials in Austria and Italy are PV while wind power has a higher potential in
Germany and Denmark. The variable production replaces electricity production from condensing power
plants and CHP plants, see Figure 50.
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Figure 50: Electricity production technology mix before and after installing additional wind power and PV. CEEP = Critical excess
electricity production (unused electricity).

By installing more variable electricity sources the export and unused electricity production (CEEP) increases
due to more hours where the electricity production exceeds the electricity demands. In Step 7 the export of
electricity is between 2-15% of the electricity production with the highest share in Denmark and the lowest
in the German system. On top of this between 0.5-3% of the total electricity produced is wasted as the
electricity production exceeds both the electricity demands in a given hour and what is possible to export or
store. In these periods the production from variable sources might shut down. This overproduction occurs

even though the production is aggregated for a country taking into consideration the differences in weather
patterns, etc.

The integration of further renewables highly impact the CO,-emissions as these decline by 30-40% compared
to the previous step. In addition, the overall socio-economic costs also decrease. After this step the primary
energy consists of 50-70% renewable sources (including biomass).

6.1.8 Step 8: Biomass conversion — High-RES

In the final Step 8 the remaining fossil fuels consumed in the system are in the transport sector and from
thermal plants (condensing power plants, CHP plants and district heating boilers). To ensure a high-
renewable system the thermal plants are converted to biomass consumption, which significantly increases
the biomass consumption, but ensures a renewable share of the primary energy of 80-85%. The biomass
potentials included in Figure 51 are based on data from the Joint Research Centre under the European
Commission comparing data across all EU countries [36].
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Figure 51: Biomass consumption for the four countries divided by technologies in the high-RES scenario

Figure 51 shows the total biomass consumption in all sectors divided by technologies. For all countries the
biomass demand exceeds the biomass potentials with the lowest domestic coverage in Italy where the
demand is around 400% higher than the potential. In Austria the demand is around 150% of the domestic
potential. This signifies the fact that biomass resources will be a scarce resource in the future.

Biomass becomes the primary fuel in the energy system going from 8% of the total primary energy in 2010
in Germany to 58%, while the numbers for Austria change from 17% to 44%. For Italy the biomass share in
2010 is 6% while it in the high-RES scenario is 62% and for Denmark the share increases from 14% to 48%.

Some measures that could contribute to reducing the biomass demand might be savings in conventional
electricity consumption, transport demands (modal shifts, etc.), integration of more renewable electricity
and heating, and additional measures related to the industrial sector.
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6.1.9 Overall results for the steps

The steps are presented in the figures below for heat production, electricity production, primary energy supply, CO,-emissions and socio-economic
costs. All the figures are presented per capita as this allows for a better comparison across countries.

6.1.9.1 Heat production

The heat produced is highest for all countries in the 2010 scenarios and is expected to decrease per capita towards 2050. Heat savings have a large
impact on the overall heat production. After expanding the district heating shares almost half of the heat produced is from CHP plants or district heating
boilers. In the individual heating step heat pumps are integrated and supplies a large share of the heating in the high-renewable scenarios. The heat
produced per capita in the high-renewable scenarios are between 3-5 MWh/capita/year with the lowest production per capita in Italy.
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Figure 52: Heat production per capita for each scenario step in the four countries.
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6.1.9.2 Electricity production

The electricity production increases for all countries as some sectors such as industry, transport and individual heating increase in electricity
consumption. For all countries the share of renewable sources increases while the thermal production (CHP and condensing power plants) remains
constant or decreases. In Germany the main technologies for electricity production in the high-renewable scenario are PV and wind power while the
nuclear production is phased out. For Austria the main sources are hydropower and PV while in Italy the highest share of the production is from thermal
plants. Denmark has the highest share of wind power installed and has no access to hydropower resources. The electricity produced per capita in the

high-renewable scenarios are between 10-16 MWh/year.
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Figure 53: The electricity production per capita for each scenario step in the four countries.

66



IEA SHC Task 52: Solar Thermal and Energy Economy in Urban Environments Country cases for Germany, Austria, Italy and Denmark

6.1.9.3 Primary energy

The primary energy decreases in all countries when moving towards the high-renewable scenarios as a consequence of the measures implemented.
Some of the measures with the highest ability to reduce the fuel demand are heat savings and the integration of more renewable electricity sources
because this reduces the conversion losses in the system. The fuel mix changes from a high dependence on fossil fuels in 2010 and 2050 to a higher
share of biomass and variable renewables. The highest fuel demands per capita are in Denmark followed by Austria, Germany and Italy.
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Figure 54: The primary energy sources per capita for each scenario step in the four countries.
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6.1.9.4 COz-emissions

The scenarios are created to achieve a high share of renewable sources and consequently the CO,-emissions drop by 80-90% in the high-RES scenario
compared to the 2010 scenarios. The emissions in the high-RES scenarios are between 1-2 t/capita/year compared to the current average EU-emission
of around 8-9 t/capcita/year. The CO, emitted in the high-renewable scenarios is from the transport sector.
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Figure 55: The CO,-emissions per capita for each scenario step in the four countries. The blue bars represent the total emissions in the countries while the X’s indicate the emissions
per capita.
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6.1.9.5 Socio-economic costs — including vehicles

In terms of socio-economic costs Figure 56 shows that the costs are on a level more or less similar to the 2050 level when moving towards a high-RES
energy system. In some cases there are even small reductions, but these are affected by fuel prices, discount rates, etc. The annual costs per capita are
between 3,500-5,000 €/year including investments in vehicles in the high-RES scenarios. When excluding vehicle costs the costs are 1,500-2,000
€/capita/year. The trend in the steps indicates that the fuel costs decrease and are replaced by a higher share of investments and operation and
maintenance costs. This is the case as e.g. coal and gas power plants are replaced by investments in PV and wind power and that heat savings require
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Figure 56: The socio-economic costs per capita for each scenario step in the four countries.
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7 Solar thermal analysis

The scenarios described in the previous section are used for the solar thermal analyses presented in the
following sections. First, a description of the analysis design is outlined followed by the results of 1) the
marginal impact analysis, 2) the analysis of solar thermal system potential and 3) the impact of installing the
solar thermal potentials. Finally, this chapter concludes with some sensitivity analysis and a discussion of the
connection between solar thermal and temperature requirements.

The solar concepts defined in section 4.3 are analysed in the EnergyPLAN models for five different scenarios.
This is to analyse whether the energy system characteristics impact the feasibility of solar thermal and also
whether solar thermal might play a larger role in certain countries than in others. Figure 57 illustrates the
analysis of the solar thermal concepts, i.e. these are analysed in the 2010 system, the 2050 system and in
three of the steps; after heat savings, after district heating is expanded and finally in the high-renewable
systems. This allows for a comprehensive assessment of the role of solar thermal under different conditions
and in different countries.

* Single-family
buildings

* Multi-family
buildings

*Block heating

o District heating
* Diurnal storage

« District heating
*Seasonal
storage

All scenarios are developed for Germany, Austria, Denmark and Italy

Figure 57: lllustration of the scenarios in which the solar thermal concepts are analysed.
7.1 Marginal impacts of solar thermal

The first type of analysis for identifying the role of solar thermal is a marginal impact analysis. This involves
analysing the impact of installing 1 TWh of each solar thermal concept in each country under different
conditions. No solar thermal production is installed in the scenarios before this analysis in order to simplify
the impact of solar thermal on a given energy system. The impacts are analysed in an energy system
perspective meaning that indirect impacts between sectors, investments, etc. are also included. A high
number of scenarios have been created as part of this analysis and therefore it is not possible to include all
the results. Hence, exemplary findings are presented to highlight the main impacts of the solar thermal
integration. In most cases the findings are similar for the 2010, the 2050 and the heat savings scenarios and
therefore only one of these are presented.

This analysis investigates the marginal impact of installing the first TWh of solar thermal into the system.
However, this impact might not necessarily be the same impact as installing 1 TWh of solar thermal in a
system that already has a higher share of solar thermal installed. Other factors such as system dynamics and
the flexibility of the systems will be more relevant when a system already has solar thermal. An example
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might be regarding the imbalances in a district heating network as solar thermal only produces heating in
periods with sun. If solar thermal is already installed there is less flexibility left for installing additional solar
thermal which could lead to overproduction of heating exceeding the demands or the volume that is possible
to store. The marginal impact analysis of installing the first TWh of solar thermal will however provide
valuable insights into the impacts of installing solar thermal in an energy system. The subsequent analyses in
section 7.2 investigate the maximum solar thermal potentials that might be installed in a country. Combined
with the marginal analysis in this section a large range of solar thermal capacities are therefore analysed. The
future solar thermal shares will most likely be somewhere in between these two extreme scenarios.

The marginal impacts of solar thermal are presented for heat production, electricity production, primary
energy, COz-emissions and socio-economic costs.

7.1.1 Heat production

Installing solar thermal has an impact on the heat supply as other technologies will need to produce less. In
the individual areas heat supply from three types of boilers is replaced depending on the fuel consumed in
that boiler. In Germany and ltaly the majority of the boilers replaced are fuelled from natural gas while in
Austria and Denmark more boilers also consume biomass. Overall, 1 TWh of solar thermal replaces 1 TWh of
heat produced from other sources.

In the district heating areas in the 2010 scenarios the district heating supply is mostly from district heating
boilers and CHP plants. Hence, the solar thermal replaces these types of technologies.
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Figure 58: Marginal changes in heating supply in the 2010 scenarios when installing 1 TWh of solar thermal.

The marginal impacts of installing solar thermal in the 2050, heat savings and district heating scenarios are
rather similar to the impacts in the 2010 scenarios and are therefore not illustrated.

In the high-RES scenarios installing solar thermal results in a different impact as the heat supply mix is
different. In the individual areas the majority of the heat supply is from heat pumps and to a lesser degree
from biomass boilers and electric heating. In the district heating areas the solar thermal replaces a smaller
share of other heating technologies. Even though 1 TWh of solar thermal is installed only between 0.2-0.9
TWh of other heat supply is replaced due to the impact that solar thermal has on the district heating balance.

The solar thermal production reduces the production from CHP plants and district heating boilers in the
energy systems.
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Figure 59: Marginal changes in heating supply in the high-RES scenarios when installing 1 TWh of solar thermal.
7.1.2 Electricity production

The solar thermal installations also impact the electricity production mix. In the 2010 scenarios it is only the
district heating solar thermal technologies that affect the electricity production as the majority of the
individual supply replaced is produced from oil, gas or biomass boilers. In the district heating networks
however, the CHP production decreases as it is replaced by solar thermal production and therefore the
condensing power plants need to operate more. This is the case in a system similar to the current system and
could potentially change in a system where more variable renewable electricity production is implemented.

The high impact on the electricity production in the Italian energy system is due to the low thermal efficiency
for CHP plants assumed in the model. This means that when 1 TWh of heat production from CHP plants is
replaced by solar thermal a higher electricity production also has to be produced by alternative sources.
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Figure 60: Marginal changes in electricity supply in the 2010 scenarios when installing 1 TWh of solar thermal.
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Rregarding electricity production the 2050, heat savings and district heating scenarios are rather similar to
the impacts on the 2010 scenarios.

When investigating the electricity production in the high-RES scenarios also the individual solar thermal
impacts the electricity production due to the higher share of heat pumps. However, for the individual areas
the solar thermal integration simply reduces the electricity demand while in the district heating areas the
production mix is affected to a higher degree. Here, CHP plant production is replaced by more production at
condensing power plants.
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Figure 61: Marginal changes in electricity supply in the high-RES scenarios when installing 1 TWh of solar thermal.
7.1.3 Primary energy

The primary energy demand is impacted based on a number of factors including; which technologies are
replaced, their efficiencies and how these technologies are fuelled. This differs between the countries and
consequently differences appear regarding the fuels that are replaced when installing solar thermal, see
Figure 62. In general, when installing 1 TWh of individual solar thermal (concept 1-3) around 1 TWh of fuels
are replaced, primarily oil and gas, but also biomass in Austria and Denmark. This is a direct consequence of
a reduction in boiler production.

For concepts 4 and 5 where solar thermal is installed in district heating networks more dynamics occur in the
energy system impacting the electricity sector. By installing solar thermal in the district heating networks less
production is needed from CHP plants which in turn must be replaced by electricity production from
condensing power plant. This means a lower energy system efficiency leading to an overall higher primary
energy demand. When comparing only the fossil fuel demands solar thermal does however lead to a
reduction.

An example is in Italy where installing 1 TWh of solar thermal reduces the CHP production by around 1 TWh
of heat production and since the thermal efficiency of CHP plants in Italy is rather low in the 2010 scenario
these plants also produce 3 TWh of electricity less. The low thermal efficiency is based on the data input
sources and is improved for the 2050 scenarios where the thermal efficiency in Italy is similar to the other
countries. This reduced CHP production then has to be produced by condensing power plants consuming coal
and natural gas. The CHP plants on the other side consume oil and gas and this is why the coal demand
increases while the oil and gas demand decreases in Figure 62. In the 2050 BAU scenario where the thermal
efficiency of CHP plants in the Italian system is improved the impacts in Italy become more similar to the
impacts of installing solar thermal in the district heating networks in Germany and Austria.

73



IEA SHC Task 52: Solar Thermal and Energy Economy in Urban Environments Country cases for Germany, Austria, Italy and Denmark

__ 4

S

©

()]

Z 3

-

£,

-3

Q.

R < Dl

>

(] 7 V4 7 7 7 7 — —

IEﬂM.MM-MKM <] I!- I!

>

£

(o s B s _E_=s_ 0 & 0

a

-2

f=

‘s H

&D -

< 3

K=

Q

T -4

qu > &g = ¥ > & = ¥ > &8 = £ > &8 = £ =z &8 = £

¥ § 5 &8 8 &§ 5 &8 ®8 & 5 & &©& & 5 &8 &8 & 5 & =

gs‘g-Esg-EE‘s—EES—EES—E
g < g & < g & < g & < s & < g
(G] (=] (U] (=] (G] [a] (G} [a] (U] [a]

1. CS-SFH 2. CS-MFH 3. BH-DE 4. SDH-DK Diurnal 5. SDH-DK Seasonal
M Solar thermal HCoal mOQil Ngas M Biomass Net

Figure 62: Marginal changes in primary energy supply in the 2010 scenarios when installing 1 TWh of solar thermal.
A similar impact as in the 2010 scenarios is valid for the 2050, heat saving and district heating scenarios.

After converting the energy system into a high-renewable system with heating and electricity sectors
supplied only by renewable sources the solar thermal integration has a different impact compared to the
other scenarios. Here, only biomass is replaced as no fossil fuels are consumed. Installing 1 TWh of solar
thermal in individual areas will replace between 0.5-0.7 TWh of biomass in the high-RES scenario.

In the high-RES system less than 0.5 TWh of biomass is replaced when installing solar thermal in the district
heating areas. This is because in this system many sources to supply the heating is installed beyond CHP
plants and district heating boilers. For example, some of the district heating production technologies replaced
are large scale heat pumps consuming wind power. When installing solar thermal there is less need for heat
production from the large heat pumps and consequently, the excess production of wind power increases
slightly making the system less flexible. This also occurs for the individual technologies where the individual
heat pump demand reduces thereby increasing the excess wind production throughout the year.
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Figure 63: Marginal changes in heating supply in the district heating scenarios when installing 1 TWh of solar thermal.
7.1.4 CO2-emissions

The changes in primary energy subsequently impacts the CO,-emissions in the system. In the analysis it is
assumed that the combustion of biomass does not impact the energy system CO,-emissions, even though
this is debated in recent years. If this assumption is altered the overall results will also change.

In the 2010 system all individual solar thermal technologies lead to a reduction in CO,-emissions as natural
gas and oil boilers are replaced. In the district heating areas the situation is more diverse as Germany and
Italy experience an increase in emissions while Austria is unaffected and the Danish energy system emissions
decreases with the installation of solar thermal. The reason for the reductions in the Danish system is that
the CHP production replaced by solar thermal to a higher degree is supplied by coal than in the other
countries where the majority of the CHP plants are fuelled from natural gas.

The increase in emissions for Germany and Italy is due to the decreasing CHP production and the increasing
production from condensing power plants leading to a higher coal demand. With a situation much similar to
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today the solar thermal integration in the district heating networks might therefore lead to an increase in
CO,-emissions, but this depends on the fuels are replaced.

0,3
v
C
[e]
) 0,2
2]
£
w
< 0,1
<
kS
o
c = 00 | | ]
R
=
T =
2201
3
oo
c
S .02
(&)
©
£
W 03
©
s
-0,4
> e > ¥ z & =2 ¥ z & = ¥ z2 =g =2 ¥ z & >
5 T & t T =& t & =& E T & 5 & &
£ 2 = £ g€ % = £ g % = g g & = g g & = £
g < s a < s a < s o < c o < o
(U] o (L) [a] (L) a (U] [a)] (U] ()
1. CS-SFH 2. CS-MFH 3. BH-DE 4. SDH-DK Diurnal 5. SDH-DK Seasonal

Figure 64: Marginal changes in CO,-emissions in the 2010 scenarios when installing 1 TWh of solar thermal.
Similar trends as in the 2010 scenarios occur for the 2050, heat savings and district heating scenarios.

In the high-RES scenarios no emission changes take place when installing solar thermal as the fuel mix in the
heating and electricity sectors is already CO>-neutral. Hence, solar thermal will only replace other renewable
sources.

7.1.5 Socio-economic costs

The marginal socio-economic cost changes illustrated in Figure 65 is a consequence of a number of factors
including; the fuel prices, discount rates, the technology investment prices as well as the solar production
costs in the various countries. These can all be contested and a more thorough sensitivity analysis can be
found in section B. Accordingly, the cost analysis should be seen as best indications when taking into
consideration the uncertainties mentioned.

In the 2010 scenarios the additional costs for installing solar thermal exceed the savings in fuels and CO; costs
for the individual solar thermal technologies in all countries. When installing solar thermal in the district
heating networks the investment costs are lower and lead to cost reductions in Italy and Austria. This can be
contributed to the lower solar thermal production costs in the district heating technologies compared to the
individual technologies. The largest cost reductions occur in Italy where the largest share of gas is replaced
which has a higher cost than coal and biomass. Another factor benefitting the Italian system are the lower
solar thermal production costs.

For the Danish system the analysis shows that the socio-economic costs will increase when installing solar
thermal in the district heating networks. This is counterintuitive when considering the current trends in
Denmark where large solar thermal plants are being installed. This can be contributed to the fact that there
are different incentives when considering socio-economic costs and private-economic costs. The large solar
thermal plants in Denmark might demonstrate a feasible business case from a private-economic perspective
where other factors such as subsidies, regulations and fuel taxations also impact the economy. In Denmark,
solar thermal plants can for example contribute to energy efficiency improvements for the district heating
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companies, which have to improve their energy efficiency performance every year according to existing
legislation.
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Figure 65: Marginal changes in socio-economic costs in the 2010 scenarios when installing 1 TWh of solar thermal.

In the 2050 scenarios changes are assumed for three main factors influencing the overall socio-economy of
solar thermal. Firstly, the fuel prices are expected to be higher than currently leading to larger cost savings,
secondly the CO; costs are also slightly higher and thirdly, the solar thermal investment prices are lower than
in 2010. All of these factors lead to an improved economic impact of installing solar thermal in both individual
and district heating areas compared to the 2010 scenarios.
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Figure 66: Marginal changes in socio-economic costs in the 2050 scenarios when installing 1 TWh of solar thermal.

Installing solar thermal in the high-RES scenarios increases the socio-economic costs for all solar concepts in
all countries. The reason is that there no longer are any economic savings from CO, costs when installing
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solar thermal as the heat supply is already CO,-neutral. Furthermore, the fuel replaced is now based on
cheaper fuels such as heat from heat pumps supplied by PV or wind power. Hence, the investments remain
the same, but the savings decrease leading to overall higher costs when installing solar thermal.
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Figure 67: Marginal changes in socio-economic costs in the high-RES scenarios when installing 1 TWh of solar thermal.

The key findings from the marginal impact analysis show that the solar thermal impact depends on what is
directly and indirectly replaced in the energy system meaning that integrated energy systems analysis is
necessary to analyse the role of solar thermal.

The impacts on primary energy are related to three factors; the technologies that are replaced, the efficiency
of the replaced technology as well as the fuel source for the replaced technology (fossil fuel, biomass
consumption or fuel free, e.g. wind power, geothermal).

The key factors impacting socio-economic costs are; the fuel prices, the discount rates, the technology
investment prices as well as the solar thermal production costs.
e Findings for four of the five scenarios (the scenarios where there is still significant fossil fuel
consumption; 2010, 2050 BAU, heat savings and district heating):

o Installing 1 TWh of solar thermal replaces 1 TWh of alternative heat production (individual
oil, gas or biomass boilers or CHP plants and district heating boilers in district heating areas)

o Installing 1 TWh of solar thermal replaces approximately 1 TWh of primary energy in
individual areas. For district heating systems the total primary energy increases, while the
fossil fuel consumption decreases.

o Installing solar thermal in district heating areas reduces CHP electricity production and
conversely increases the condensing power plant production.

o The CO,-emissions decrease when installing solar thermal in individual areas. In the district
heating areas, some countries experience increasing CO,-emissions while other countries
experience decreasing emissions depending on the fuels replaced.

o The socio-economic costs increase in individual areas when installing solar thermal as the
additional investment costs exceed the savings in fuel expenditures. In district heating
areas, the economic impacts are cost-neutral, but depend on the fuels replaced.

e Findings for the high-RES scenario where fossil fuels are only consumed in the transport sector:

o Installing 1 TWh of solar thermal in the individual areas replaces 1 TWh of heat production

from heat pumps or biomass boilers. In the district heating areas, less than 1 TWh of heat
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production is replaced due to mismatches between periods with solar thermal supply and
district heating demand.

o Installing additional solar thermal in individual areas results in decreasing electricity
demand due to lower heat pump operation. When installing additional solar thermal in
district heating areas the CHP plants produce less heat and electricity, thereby requiring
the condensing power plants to produce more.

o Less than 1 TWh of biomass is replaced in the individual areas when installing solar thermal
as highly efficient production from heat pumps is replaced. In district heating areas, the
biomass reductions are even lower due to the system design with fuel-free heat sources
such as geothermal and industrial excess heat and efficient supply from large heat pumps.

o There are no impacts on CO,-emissions in the high-RES scenario as no fossil fuels are
consumed.

The socio-economic costs increase in the high-RES scenarios in both individual and district
heating areas in all countries when increasing the solar thermal production due to the
lower value of the fuels replaced (biomass, wind power) and since there are no CO; costs.

7.2 Technical system potential of solar thermal

This section presents the analysis of the solar potentials that might be installed in each country. Similarly to
previous analysis the solar thermal potentials are analysed for five different scenarios (2010, 2050, heat
savings, district heating and high-RES) as well as for the four countries. The maximum solar thermal potential
is presented for each of the countries followed by a description of the measures that impact the solar thermal
potentials.

7.2.1 Defining the technical system potential

The technical solar thermal potential is defined as the solar thermal potential that the energy system might
accommodate in terms of reducing mismatches between energy supply and demand. Hence, no
considerations have been included regarding space requirements, manpower for installing the plants, impact
on landscapes, etc.

Some key assumptions are defined below as these determine the solar thermal potentials for each system.

IM

Firstly, it is found that the solar thermal “penetration” has a significant impact on the solar thermal share
that can be installed in a system. The solar penetration refers to the share of buildings that are connected to
a solar thermal system, i.e. a solar penetration share of 20% means that 20% of all heat consumers are
connected to a solar thermal plant, either directly in the building or connected via a district heating system.
In the analysis two values are defined as border values for the solar penetration; 20% and 50%. Therefore, in
the analysis it is assumed that the maximum share of consumers that are connected to a solar thermal system
can be 50%. If this value is higher than 50% then the solar thermal potential will also increase.

The solar thermal penetration is crucial because when more consumers are connected to a solar thermal
plant the peak production during summer periods can be distributed to a higher number of consumers. If a
low share of consumers are connected to the plant the 5% overproduction might equal a lower solar thermal
production as the peak production in more hours exceeds the demands.

Secondly, solar thermal is a variable energy source and as more capacity is installed in the system more of
the production might be “wasted” due to the system flexibility. Hence, it is necessary to define a threshold
for overproduction of solar thermal. This has been defined using two factors; 1) the overproduction of solar
thermal can be maximum 5%, i.e. maximum 5% of the solar produced at the plant can be wasted in the
system and 2) the district heating imbalance must not exceed 5% meaning that the annual district heating
production that is wasted due to a mismatch between demand and production is below or around this
threshold.
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The significance of selecting the maximum solar thermal overproduction as 5% is indicated in Figure 68
showing the maximum solar thermal potential as a share of the heat production at different overproduction
levels. The example shows the case of Germany 2010 for both individual solar thermal and district heating
solar thermal. The figure shows on the x-axis the level of overproduction that is acceptable before the
maximum solar thermal potential is identified while the y-axis indicates the solar thermal share in the energy
system. The impact of this threshold is investigated for four different scenarios, i.e. solar thermal for
individual and district heating purposes as well as with a low and high solar thermal penetration rate.

The figure shows that the overproduction level has an impact on the solar production that can be installed
in the system, but that the impact is less significant than other factors. When increasing the overproduction
level from 5% to 10%, then 10% more solar thermal production might be installed in the system. This
corresponds to an increase in the solar thermal share of up to additionally 1% of the heat production.
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Figure 68: Solar thermal share of heat production at different overproduction levels. The figure shows that the difference in
terms of solar thermal share is around one percentage point when increasing the overproduction level from 5% to 10% with a
high solar penetration rate and around half a percentage point when the solar penetration rate is lower.

For all analysis of the solar thermal potentials solar concept 1 (Combined system — Multi Family houses) and
solar concept 4 (Solar District heating — diurnal storage) are analysed, see section 4.3 for further details on
the solar concepts. This means that no analysis of solar concepts 2, 3 and 5 are carried out as the number of
models would increase significantly. It is assumed that these two solar concepts will be the most common
types of future solar installations for individual and district heating areas.

7.2.2 Solar thermal potentials for Germany, Austria, Italy and Denmark

The maximum solar thermal potentials are investigated for two different solar penetration levels,
respectively 20% and 50%. This creates an interval for the solar thermal potentials and changes according to
the assumed solar penetration levels. The solar penetration levels impact the potential analysis, but are
deemed as sensible for what might be expected for future developments.

7.2.2.1 Germany

In Germany the solar thermal potentials are highest in the 2010 model with a total solar thermal production
around 30-60 TWh/year decreasing to around 15-25 TWh/year in the high-RES scenario. The decrease in solar
thermal potential is primarily in individual heating areas where heat savings lead to an overall lower heat
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demand. When the heat demand decreases there is accordingly less potential for installing solar thermal.
Furthermore, converting to a higher share of district heating supply reduces the solar thermal potentials in
individual buildings and increases the solar thermal potentials in district heating networks. In the high-RES
scenario the district heating solar thermal decreases as the solar thermal is being pushed out of the district
heating supply by alternative heating sources such as industrial excess heat, geothermal heating and waste
incineration. These alternative renewable heating sources are to a large degree baseload production
technologies reducing the energy system flexibility leading to less demand that can be supplied by solar
thermal. In addition, more variable renewable electricity sources are implemented leading to a lower overall
system flexibility making CHP plants more important for the balancing of the electricity system. This also
impacts the district heating system where less flexibility is allowed for the integration of solar thermal plants.
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Figure 69: German solar thermal potentials for individual heating and district heating under different conditions.

Even though the solar thermal production decreases the solar thermal potential as a share of the heating
production is similar around 3-7% between the 2010 and the high-RES scenarios. The solar thermal share
increases for both individual and district heating areas when carrying out heat savings, but decreases again
in the high-RES scenario due to lower flexibility and the integration of other renewable supply technologies.
The total solar thermal share is in the range of 3-5% of the heating production with the low solar penetration
rate and 7-11% with the high penetration rate.
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Figure 70: German solar thermal potential share of the heat production for individual heating and district heating under
different conditions.

7.2.2.2 Austria

In the Austrian energy system the solar thermal potentials for individual and district heating systems are
rather similar between 1-4 TWh/year. The total solar thermal production for the various scenarios are 2-7
TWh with a declining trend going from the 2010 system towards the high-RES system. Also in Austria solar
thermal will start competing with other renewable technologies in the high-RES scenario.
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Figure 71: Austrian solar thermal potentials for individual heating and district heating under different conditions.

The solar thermal share in the district heating systems in Austria is higher than for individual systems in all
the scenarios, except for in the high-RES scenario. The total solar thermal share for the low penetration level
is between 3-5% while the high penetration rate leads to a maximum solar thermal share of 8-12%.
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Figure 72: Austrian solar thermal potential share of the heat production for individual heating and district heating under
different conditions.

7.2.2.3 ltaly

The Italian system of 2010 has a limited amount of district heating implemented and consequently a high
share of individual heating. This is also reflected in the solar thermal potentials where the majority of the
solar thermal potentials in the 2010, 2050 and heat saving scenarios are in individual heating areas. After
conversion to a higher share of district heating this changes as the majority of the solar thermal potential
moves to the district heating areas. Overall, the combined solar thermal production potential is rather
constant throughout the scenarios despite the change between potentials in individual and district heating.
The production potentials are in the range of 10-25 TWh/year depending on the solar penetration.
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Figure 73: Italian solar thermal potentials for individual heating and district heating under different conditions.

When analysing the solar thermal potentials as a share of the overall heat production the Italian potential
increases when moving from the 2010 scenario to the high-RES scenario. This is mainly due to the increased
solar thermal share after carrying out heat savings. The solar thermal shares are higher in the district heating
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areas than in the individual heating areas for all scenarios. The overall solar thermal share in Italy is in the
range of 2-6% for the low penetration rate and 6-10% with the higher penetration, slightly lower than in the
German and Austrian systems.
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Figure 74: Italian solar thermal potential share of the heat production for individual heating and district heating under different
conditions.

7.2.2.4 Denmark

The Danish solar thermal potential is higher for district heating networks than for individual heating areas
due to the high share of district heating installed already in the 2010 scenario. Consequently, the largest
decline in solar thermal potential can also be found in the district heating areas when heat savings are
implemented. Similarly to the other countries the total solar thermal production potential decreases when
moving towards the high-RES scenario. The combined production potential is between 1-5 TWh/year.
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Figure 75: Danish solar thermal potentials for individual heating and district heating under different conditions.
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The potential solar thermal share remains rather constant for the individual heating solutions in all the
scenarios while the share in the district heating networks increase, especially after heat savings are
implemented in the energy system. Heat savings reduce the overall solar thermal production that can be
installed, but increases the solar thermal share in the system. Overall, the solar share is around 3-4%
assuming a low penetration level and between 8-10% with the high penetration rate.
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Figure 76: Danish solar thermal potential share of the heat production for individual heating and district heating under different
conditions.

7.2.2.,5 Comparison between countries

In this section a solar thermal penetration rate of 35% is assumed as an average of the two levels previously
presented. If this rate is changed then the solar thermal potentials also change.

When comparing the countries rather similar trends can be identified indicating a decreasing production
when going from today’s system towards a system with a lower heat demand and a higher share of
renewable sources installed. The exception is for Italy, see Figure 78, where the solar thermal production is
rather similar for all the scenarios.

g8 & &8 &

20

Total solar thermal production (TWh)
[ N
[%,] o wv [%,]

o

2010 2050 Heat savings District heating High-RES

= Germany 35% Italy 35%

Figure 77: Solar thermal production potentials for Germany and Italy with a solar penetration rate of 35%.
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Figure 78: Solar thermal production potentials for Austria and Denmark with a solar penetration rate of 35%.

When comparing the solar thermal potential shares for individual heating rather similar potentials can be
identified for the four countries. Here, the potential shares increase from around 4-5% to 6-7% of the total
individual heat supply after heat savings are implemented. The individual solar thermal potential across all
countries and scenarios is in the range of 4-7% when assuming a solar thermal penetration rate of 35%. This
potential is limited to 4-7% as further solar thermal does not align with the heat demand profiles and hence
overproduction is created.
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Figure 79: Individual solar thermal potentials as a share of the the total individual heat production with a solar penetration rate
of 35%.

For district heating networks there are more differences between the countries regarding the solar thermal
potential shares, particularly after expanding the district heating network. After heat savings have been
implemented Italy has the highest potential share around 12%. In the high-RES scenarios the decreases in
solar thermal potential shares are largest for Austria and Germany compared to Denmark and Italy. This
difference is due to the flexibility of the energy systems where the district heating imbalances are more
heavily impacted in Austria and Germany. This can be seen in Figure 81 where the district heating imbalance
is impacted more when going from the district heating scenario to the high-RES scenario with no solar
installed in Austria and Germany than in Italy and Denmark.

Overall, across all countries and scenarios the district heating solar thermal potential share is between 6-10%
of the heating production.
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Figure 80: District heating solar thermal potentials as a share of the the total district heat production with a solar penetration
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Figure 81: District heating balances for the four countries with no solar and full solar district heating potential installed. A
negative value indicates an overproduction of district heating in the system.

When combining individual heating and district heating, see Figure 82, there are small differences in terms
of potential solar thermal share between the countries. Overall, the solar thermal share is between 5-8%
when assuming a solar penetration rate of 35%. When increasing the penetration rate to 50% the combined
solar thermal potential is between 6-12% while a lower penetration rate of 20% will lead to a maximum
potential of 3-6% of the heat production.
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Figure 82: Total solar thermal share potentials in the four countries with a solar penetration rate of 35%.

The key findings from the maximum solar thermal potential analysis (50% solar thermal penetration rate):

e The solar penetration rate is essential for the overall solar thermal potential in both individual and
district heating areas.

e The energy system flexibility is crucial for the ability to integrate solar thermal energy and is based
on two key factors:

o The share of baseload district heating production affects the ability of the system to
integrate solar thermal.

o The share of variable renewable electricity sources and the link to the heating sector
through heat pumps and CHP plants.

e The technical production potential is impacted by the total heat demand in each country. However,
the heat demand differences between the countries only slightly impact the overall potential for
the solar thermal share of the total heating production.

e The potential solar thermal share is between 5-8% of the heat production when assuming a solar
penetration of 35%. This might increase to 6-12% with a 50% penetration and decrease to 3-6%
with a 20% penetration.

7.2.2.6 Solar thermal potential as collector area

The solar thermal potentials estimated can be converted to solar collector area. This is depicted in Figure 83-
Figure 86 showing the potentials from the previous section with a solar thermal penetration rate of 35%.

The solar collector areas are based on the solar yields assumed for each country. The solar yields are specified
in Table 23 and is based on the average solar yields in the capital of each country.

Table 23: Solar yields in each country for solar concepts 1 and 4 [37].

Solar yields (kWh/m?) Germany Austria Italy Denmark
Concept 1 (CS-MFH) 330 402 451 314
Concept 4 (SDH-DK-Diurnal) 410 500 560 390

The potential solar collector area in Germany is between 40-160 million m?, in Austria the potential is
between 5-20 million m?, for Italy the potential is 30-70 million m? and finally in Denmark the potential is in
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the range of 4-12 million m2. The potentials are higher in the 2010 and 2050 scenarios where no heat savings
have been carried out and if high solar thermal penetration rates are assumed.
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Figure 83: German solar thermal potentials illustrated as solar collector areas in the various scenarios.
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Figure 84: Austrian solar thermal potentials illustrated as solar collector areas in the various scenarios.
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Figure 85: Italian solar thermal potentials illustrated as solar collector areas in the various scenarios.
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Figure 86: Danish solar thermal potentials illustrated as solar collector areas in the various scenarios.

The solar thermal potential can also be measured as the potential per capita. This is illustrated in Figure 87
with a solar thermal penetration rate of respectively 20% and 50%. The figure shows that Itlay has a lower
potential per capita than the other countries and that the solar thermal potential decreases in all countries
when moving towards the high-RES scenario, in line with previous results.
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Figure 87: The solar thermal potential per capita in the four countries with 20% and 50% solar thermal penetrations.

7.2.2.7 Solar thermal potential for industrial processes

In this study solar thermal for industrial purposes has not been analysed in details. Instead, this section
presents the findings of the IEA SHC Task 49 study regarding Solar heat integration in industrial processes
[38]. Task 49 deliverable C5 is about “potential studies on solar process heat worldwide” containing a
literature review of the solar thermal potentials in industrial process heat.

In the study it is estimated, based on a number of case studies for Spain and Portugal, that the largest
potentials for integration of solar thermal in industries is within the food and beverages sector [39]. The
technical potential is 3-4% with the limiting factor in these countries being the available roof area. Other
industrial sectors could be chemicals, paper, tobacco, as well as leather and textiles. In the Netherlands a
similar study was carried out where the solar thermal potential of the industrial heat demand is assessed to
be 3.4% [40]. In this study the barriers for solar thermal integration are described as the use of excess heat,
roof area and competing technologies such as heat pumps and CHP. A third study estimates that the industrial
solar thermal potential in Sweden is 1.5-2% [41] while the potential for Austria is estimated to be around 4%
of the industrial heat demand [42].

In Germany the theoretical potential for industrial solar thermal is estimated to be 134 TWh/year while the
technical potential is around 16 TWh/year [43].

Furthermore, it was found that the global solar thermal potential for industries is around 1,500 TWh/year
corresponding to 2% of the total final energy demand for industries. Also here food and beverage industries
are found to be most suitable for solar thermal integration. UNIDO finds that the global potential could be
slightly higher around 2,200 TWh/year when including concentrating collectors for chemical processes [44].

Overall, [39] finds that the technical potential for industrial solar thermal integration in a number of European
countries is in the order of 3-4% of the industrial heat demand, see Figure 88.
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Figure 88: The solar thermal potential for industrial processes in a number of European countries. From [39].

When assuming that the solar thermal potential for industries is 3.5% of the heat demand the solar thermal
potential increases by around 10 TWh in Germany, 1.5 TWh in Austria, 11 TWh in Italy and 1 TWh in Denmark.

7.3 Impacts of installing solar thermal potentials

The impacts of installing the identified solar thermal potentials are analysed in this section emphasizing the
impacts on fuel consumption, CO;-emissions and energy system costs.

7.3.1 Solar thermal impact on fossil fuel and biomass consumption

A significant benefit from installing solar thermal can be to replace other types of fuels such as fossil fuels
and biomass, which might benefit the system in terms of CO,-reductions and reducing the pressure on
biomass resources. This is a key issue as presented in section 6.1.9. The impacts presented below include
installing the full solar thermal potentials with a 50% solar penetration rate and is affected by the fuel mix
assumed for the individual and district heat supply. For example, the share of biomass and fossil fuels for
electricity and heat production in CHP plants influence the biomass savings from installing solar thermal.

Installing the maximum solar thermal potential with a 50% penetration rate in the individual heating areas
in all cases decreases the fossil fuel demand in the energy system, see Figure 89. The largest reductions are
in the 2010 scenarios due to the largest fossil fuel share in the heat supply. The German and ltalian energy
systems have a larger decrease than the other countries due to a larger share of fossil fuel boilers, primarily
natural gas and oil boilers. When moving towards a high-RES system other renewable technologies will supply
parts of the heat demand leading to decreasing fossil fuel reductions when installing solar thermal.

The impacts of installing solar thermal for district heating are different than the impacts in the individual heat
supply. For district heating areas the impacts on fossil fuel demands are less when installing the maximum
solar thermal potential as the highest reduction in fossil fuel demand is approximately 0.5%. The decreasing
fossil fuel demand is caused by the solar thermal plants replacing CHP plant production. As CHP plants
decrease their production condensing power plants will conversely produce more resulting in an overall
lower energy system efficiency. In the analysis it is assumed that the condensing power plants primarily
consume coal while the CHP plants are fuelled primarily by natural gas. Overall, this leads to minor fossil fuel
reductions in three out of the four countries. However, in the German system the fossil fuel demand increases
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when installing the maximum solar thermal potential because it is assumed that the condensing power plants
in Germany have a slightly lower efficiency (37%) than in the three other countries (~40%). When improving
this power plant efficiency to 40% Germany would have a similar minor decrease in fossil fuel demand as the
other countries. This demonstrates that the thermal plant efficiencies also have some impact on the fuels
replaced when installing solar thermal. The impacts on the fossil fuel demand are however rather
insignificant regardless of the assumptions for condensing power plant efficiencies and the fuel mix.

When combining the impacts in the individual and district heating areas the maximum fossil fuel reductions
are 1-2% of the total fossil fuel demand. When moving towards the high-RES scenario less fossil fuels are
saved and in the high-RES scenario no fossil fuels are replaced.
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Figure 89: Fossil fuel reductions in individual and district heating networks when installing the full solar thermal potentials.

The effect of installing the maximum solar thermal potential in regards to the biomass demand are illustrated
in Figure 90. In general, the largest biomass reductions for all countries are in the individual heat supply
where some biomass boilers are replaced in the 2010, 2050 and heat savings scenarios. In the District heating
and high-RES scenarios more heat pumps are installed supplied by electricity which are, to some degree,
based on power plants consuming biomass. The biomass reductions are a result of the technologies replaced,
i.e. the share of biomass supply installed in the energy system.
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The district heating biomass reductions are lesser as more renewable heating sources are installed (excess
industrial heating, geothermal, etc.) and consequently a lower share of the heat supply is based on biomass.
The largest reductions are in the Austrian system where a larger share of the CHP and district heating boiler
production is based on biomass than in the other countries.

Overall, the biomass reductions as a share of the total biomass consumption is largest in the 2010 scenarios
and decrease when moving towards the high-RES scenario. In the 2010 system 2-4% of the biomass can be
saved when installing the maximum solar thermal potential. In the high-RES scenario the biomass reduction
decreases to a level around 1-2% of the total consumption.

When combining these fuels the overall fossil fuel and biomass reduction is in the range of 1-3% depending
on the scenario and if the savings are compared to the heating and electricity sectors only or the entire
energy system fuel consumption.
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Figure 90: Biomass reductions in individual and district heating networks when installing the full solar thermal potentials.
7.3.2 Solar thermal impact on CO;-emissions

Solar thermal impacts the CO;-emissions in the system as it displaces other fuels. In this section the changes
in COz-emissions are presented for individual solar thermal, district heating solar thermal as well as the two
of them combined. The impacts on CO,-emissions are based on the assumption that combustion of biomass
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has no impact on the energy system CO,-emissions and furthermore that the production of the technologies
are not included in the analysis.

Installing the maximum individual solar thermal potential leads to a reduction in CO,-emissions for all
scenarios except in the high-RES scenario. In this scenario solar thermal replaces other renewable sources
thereby having no impact on the emissions. The emission reductions for the individual solar thermal is highest
in Germany and Austria and lowest in Denmark depending on the share of fossil fuel boilers and biomass
boilers. The reductions in CO,-emissions from installing the individual solar thermal potential is 0.5-1.5% of
the total system emissions.
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Figure 91: Marginal changes to overall energy system CO,-emissions based on the solar thermal technology installed for the
various scenarios in the four countries.

When installing solar thermal in the district heating networks the CO,-emissions are impacted differently
than in the individual heating areas. For three out of the four countries the CO,-emissions increase when
installing solar thermal, see also section 7.1.3. Only in Denmark the emissions decrease caused by the high
share of coal consumption in CHP plants in Denmark while a higher share of natural gas is consumed in CHP
plants in the other countries. Coal has a higher emission factor than natural gas and this makes a difference
regarding reductions or growing emissions. This is highly impacted by the energy system design and the
type of production units that will operate more when reducing the electricity production from CHP plants.
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In the scenarios in this study these units are fuelled by fossil fuels, but if the energy system allows for
implementing further variable renewable electricity sources, then a different impact on CO,-emissions
might occur. The CO,-emissions calculated in Figure 91 also change according to the energy system CO,-
emissions assumed from biomass (in this study no emissions are assumed). No impacts occur on the
emissions in the high-RES scenarios when installing solar thermal. The CO,-emission impacts from solar
thermal in the district heating networks are however rather insignificant with a maximum change of 0.5%
compared to the total energy system CO,-emissions.

When combining the impacts of the individual and district heating solar thermal potentials the majority of
the scenarios lead to CO»-savings. The emission savings are 0.5-1.5% of the total energy system emissions.
The exception is in the high-RES scenarios where there are no impacts from installing the maximum solar
thermal potential.

The figures presented in this section are compared to the total energy system emissions, including
transport and industry. As solar thermal has no impact on these sectors the impact of solar thermal on only
the electricity and heating sectors are relatively higher.

7.3.3 Economic impact of solar potential

Installing the maximum solar thermal potential also impacts the socio-economy of the energy systems. For
individual solar thermal the system costs increase as the solar thermal production has higher costs than the
heat supply replaced. The Italian system result in better economic impacts from installing solar thermal
compared to the other countries, caused by the lower solar thermal production costs, which is a consequence
of the solar irradiation. The largest cost increases occur in the 2010 scenarios as the investment prices for
solar thermal are higher than in 2050 and also the fuel prices are lower leading to less cost savings for fuels.
Overall, the cost increases are 0-1% for the entire energy system when integrating the maximum solar
thermal potential in the individual areas.

For solar thermal in district heating networks the impacts differ more between the countries. Here, solar
thermal in some instances lead to cost reductions, primarily in the Austrian and Italian systems, while in
Denmark and Germany the solar thermal implementation result in slightly higher costs. This is caused several
factors; firstly, the solar thermal production costs are lower in Italy and Austria, and secondly, cheaper fuels
such as biomass is replaced in Denmark. In the high-RES scenario all countries experience cost increases when
installing solar thermal as lower cost heating sources are replaced (e.g. heat pumps consuming wind and PV,
biomass, industrial excess heating, etc.). Overall, the impacts of installing the maximum solar thermal
potentials in the district heating areas are in some scenarios a decrease of 0.1% and in other scenarios an
increase of 0.2%. The socio-economic impacts of installing solar thermal district heating are therefore close
to cost-neutral.

When combining the economic impacts of solar thermal in individual and district heating systems the overall
costs increase for almost all scenarios in all the countries. The largest impact in terms of cost increases occurs
in the 2010, 2050 and high-RES scenarios while in the Heat savings and District heating scenarios smaller
impacts ensue. Overall, the cost increases are in the range of 0-1%.

The costs presented here include all energy systems costs (also transport vehicles) and if the transport sector
and the industry is excluded so only the heating and electricity sectors are considered the relative increase
in costs would be higher.
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Figure 92: Marginal changes in overall socio-economic costs when implementing the maximum solar thermal potential in the
individual and district heating areas for the various scenarios in the four countries.

A summary list of the key findings is specified below.

e Installing the maximum solar thermal potential with a 50% solar penetration is an extreme
situation. The other extreme is in the marginal analyses when 1 TWh solar thermal is installed. The
overall results are expected to be somewhere in between these.

e Installing the maximum solar thermal potential in individually supplied areas reduces the fossil fuel
and biomass consumption.

e If the maximum solar thermal potentials are installed in the district heating areas the impact on
fossil fuels is insignificant as oil and gas is replaced by a higher coal consumption. Moreover, the
biomass consumption decreases in all scenarios for district heating areas. The amount of fuels
replaced is also impacted by the thermal plant efficiencies.

e Overall, the fossil fuel reductions are 1-2% of the total consumption while the biomass reductions
are 2-4% of the total consumption.

e The changes in fuel consumption impact the CO,-emissions, which decrease by 0.5-1.5% of the
total emissions with the largest reductions in individually supplied areas. In the district heating
areas, some scenarios have increased emissions and others will decrease when installing the full
solar thermal potential.
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e No emission reductions occur in the high-RES scenario as no fossil fuels are consumed. The biomass
reductions in the high-RES scenario is around 1-2% across all scenarios.

e The socio-economic costs increase when installing the maximum solar thermal potential in the
individual areas. In the district heating areas, the solar thermal implementation is close to cost-
neutral with increasing costs in some countries and reductions in other countries.

e Overall, the costs increase by 0-1% of the total system costs when installing the maximum solar
thermal potentials in both the individual and district heating areas.

e The most important factor for cost differences between the countries is the solar thermal
production costs.

7.4 Sensitivity analysis

In the energy system analysis a number of key assumptions have been made which potentially impact the
findings. Therefore, some of these key assumptions and their significance on the findings are investigated in
this section. These assumptions include fuel prices and the investment prices for solar thermal technologies.

7.4.1 Fuel prices

The fuel prices assumed in the analysis are rather high and could therefore impact the results. The impact of
altering the fuel prices is investigated and described below. As previously described the EnergyPLAN
simulation strategy is the Technical simulation meaning that the system is simulated regarding energy system
efficiency and fuel reductions. Hence, changing the fuel prices solely impacts the socio-economic costs of the
system and not the fuel consumption.

The three fuel price alternatives investigated can be found in Table 24.

Table 24: Fuel prices by fuel type, excluding costs for transport to the place of consumption for each cost scenario. The high fuel
price is used for the analysis in this report.

2015- Coal Natural Fuel Diesel fuel/ Gas Petrol/ Straw/ Wood Energy
€/GJ gas oil Oil JP1 chips Crops
Low 2.7 5.9 8.8 11.7 12.7 4.7 5.6
Medium 3.1 9.1 11.9 15 16.1 4.7 6.2
High 34 12.2 16.1 20 20.6 6.3 8.1

The impact of fuel prices have been investigated for some of the steps in the design of the high-renewable
energy system and regarding the impact of installing solar thermal systems. The fuel price impacts have been
analysed for all four countries and the German energy system is used as an example for the figures below.

The fuel price impact on the level of heat savings with the lowest energy system costs is visible in Table 25
indicating that the heat saving level with the lowest overall socio-economic costs only changes marginally
when altering the fuel prices. With the high and medium fuel prices 50% heat savings is the cheapest option
while lower fuel prices lead to almost identical costs for 40% and 50% heat savings. Similar trends are clear
for the other countries where heat savings becomes less attractive from an economic perspective with lower
fuel prices, but will only have a limited impact on the heat saving levels. Similar trends can be identified
regarding the feasible district heating levels and the technology for supplying the majority of the individual
heat supply.

Table 25: Overview of impacts of changed fuel price levels on the level of heat savings, district heating and individual heating
supply. Some levels are almost identical in terms of socio-economic costs and hence both are included in the table.

Step Fuel price level Germany Austria Italy Denmark
Step 1: High fuel prices 50% 40% 60% 30/40%
Heat savings Medium fuel prices 50% 40% 60% 20/30%
Low fuel prices 40/50% 30/40% 60% 20%
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Step Fuel price level Germany Austria Italy Denmark
Step 2: High fuel prices 40% 40% 70% 60%
District heating Medium fuel prices 40% 40% 70% 60%
Low fuel prices 30/40% 40% 70% 60%
Step 3: High fuel prices Heat pumps Biomass Biomass Biomass
Individual heating  Medium fuel prices Heat pumps Biomass Biomass Biomass
Low fuel prices Heat Biomass Biomass Biomass

pumps/Biomass

The impact on the marginal solar thermal installations in terms of socio-economic costs have also been
investigated. Figure 93-Figure 95 show that lower fuel prices lead to decreasing fuel savings when installing
solar thermal and hence overall higher costs. The cost changes are however limited compared to the total
system costs.
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Figure 93: Marginal changes in socio-economic costs with high fuel prices in the 2050 scenarios.
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Figure 94: Marginal changes in socio-economic costs with medium fuel prices in the 2050 scenarios.
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Figure 95: Marginal changes in socio-economic costs with low fuel prices in the 2050 scenarios.

Installing the maximum solar thermal potential with the high solar penetration rate impacts the overall socio-
economy to a minor degree. Figure 96 and Figure 97 illustrate the marginal changes in socio-economic costs
of installing the full solar thermal potential with high and low fuel prices. The costs increase as the value of
fuel savings decrease from installing solar thermal and with the low prices none of the scenarios will
experience cost decreases. Assuming low fuel prices rather than high prices lead to an increase in marginal
cost change of around 0.2% point when comparing to the total energy system costs.
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Figure 96: The marginal changes in socio-economic costs as a percentage of the total energy system costs with high fuel prices.
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Figure 97: The marginal changes in socio-economic costs as a percentage of the total energy system costs with low fuel prices.

Based on the investigations of the significance of fuel prices it can be concluded that the fuel price only has
limited impact on the overall findings in terms of designing a high-renewable energy system and the
feasibility of solar thermal systems. With lower fuel prices energy efficiency measures such as heat savings,
district heating and heat pumps become less attractive while renewable sources replace cheaper fuels
leading to overall lower cost savings. This is also the case when installing solar thermal systems. However,
the changes are insignificant in terms of their impact on the overall findings.

7.4.2 Solar thermal investment prices

This study focuses on solar thermal technologies and their role in the future energy system. Therefore,
analyses of the significance of the solar thermal investment prices are included when installing the full solar
thermal potentials identified previously. The solar thermal prices are assumed to decrease by 25-35%
between 2015 and 2050 and additional technology improvements are investigated. The impact of investment
price reductions of additional 25% and 50% price reductions compared to the 2050 prices are included in the
analysis of the overall socio-economic costs of the energy system.

The impact of lower investment costs for solar thermal are illustrated in Figure 98 where the original prices
are represented along with the reduced investment costs. With the original solar thermal investments for
individual heating almost none of the scenarios proved overall cost reductions, but when the investment
prices are 25% lower some of the scenarios prove cost reductions, especially after heat savings. A similar
trend is clear when reducing the investment costs by 50% as the overall costs then decline for the scenarios
with heat savings and district heating. However, none of the high-RES scenarios prove overall system cost
reductions when installing individual solar thermal, even when the solar thermal investments are 50% lower.
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Figure 98: Marginal socio-economic cost changes for individual solar thermal potentials. The maximum potentials are installed in
all the countries for three different solar thermal investment price levels; original as assumed in previous analyses with 2050
solar thermal prices, and with additional 25% and 50% lower investment prices.

The socio-economic costs are less impacted when changing the investment prices for solar thermal
technologies for district heating areas. This is due to the already lower investments per energy delivered
compared to the individual solar thermal technologies. When reducing the investment prices the overall cost
changes do not change the overall conclusions regarding the solar thermal for district heating. However, in
the high-RES scenarios all countries experience overall cost increases.
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Figure 99: Marginal socio-economic cost changes for district heating solar thermal potentials. The maximum potentials are
installed in all the countries for three different solar thermal investment price levels; original as assumed in previous analyses,
with 2050 solar thermal prices, and with additional 25% and 50% lower investment prices.

When installing the maximum solar thermal potentials in both the individual and district heating supplied
areas the reduction in solar thermal investment prices will have an impact on whether the overall costs will
increase or decrease. The largest impacts occur in the individual technologies, see Figure 100.

Denmark e
wv
—_ u Italy —
g2 £
§ ) W Austria I
0 = T
-G E Germany P
S
o X &  Denmark T
o = =
28 ] Italy ——
c & <
3 O (] Austria m—
2 o —~%
% E & 2 Germany —
c 0 &
5 5 s g Denmark I
oY c
% o g Italy ——
w O .
c S 02 Austria —
F= ] e
o o T Germany [r—
< o
B o Denmark I —
- O
'E a 2 ltaly EE—
A E o .
o = ~ Austria I
I
Germany ¥
-0,6% -0,4% -0,2% 0,0% 0,2% 0,4% 0,6% 0,8% 1,0%
M Original ™ 25% lower investments 50% lower investments

Figure 100: Marginal socio-economic cost changes for individual and district heating solar thermal potentials. The maximum
potentials are installed in all the countries for three different solar thermal investment price levels; original as assumed in
previous analyses with 2050 solar thermal prices, and with additional 25% and 50% lower investment prices.

The results show that with a 25% reduction in solar thermal investment prices compared to the already lower
2050 prices some of the scenarios will have decreasing costs and with a 50% reduction almost all of the
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scenarios will lead to lower costs. However, this is not the case for the high-RES scenarios that regardless of
the investment price have higher socio-economic costs when installing the solar thermal potentials.

Furthermore, it seems unrealistic that the solar thermal investment prices will decline in a rate as
investigated here. The solar thermal prices compared to the 2015 prices are in some cases 65% lower.

7.5 Efficiency improvements of reduced temperature levels in district heating networks

This section presents and discusses the potential improvement in efficiency of solar thermal connected to
district heating, in case of reduced temperatures in the network. In addition, it is calculated how reduced
temperatures would influence the performance of the solar thermal district heating production in the four
case countries, Denmark, Germany, Austria and Italy.

7.5.1 Reducing temperature requirements in district heating networks

The temperature level in district heating networks is important to ensure the consumers a sufficient and safe
supply to cover space heating and hot water demand. On the other hand the temperature in the network
also defines the heat losses and requirements for heat production units, and therefore lower temperatures
can also be desirable to reduce network losses and improve production efficiencies [45].

Simply speaking, district heating networks consist of supply pipes and return pipes, where the supply pipe
delivers the hot water to the consumer where it is cooled and returned in the return pipe. The supply
temperature can be controlled by the district heating producers whereas the return temperature depends
on a number of factors related to the individual consumers, heating installations in the buildings and the pipe
network. This means that a reduced supply temperature not necessarily means a reduced return
temperature.

The supply temperature can be reduced to a certain extent without considering the return temperature. As
the temperature difference between supply and return gets smaller, more water need to flow through the
system to cover the same heating demand. This will increase the pressure in the pipes and the electricity
consumption for pumping, and at a certain point it is no longer feasible to reduce the supply temperature
without also considering the return [46]. If the supply temperature is reduced below about 55°C it is also
necessary to consider prevention of legionella in the domestic hot water supply. This can be done by e.g.
local instantaneous heat exchangers or electric temperature boosting using micro heat pumps or direct
electric heating. [47,48]

It is technically possible to ensure low return temperatures from new buildings, with heating systems
designed for low temperatures, especially low energy buildings with floor heating. Studies have shown that
in many buildings it is also possible to reduce the return temperature from buildings without replacing the
entire heating system, but only a few critical radiators or thermostatic valves and making a good adjustment
of the heating system in the building [49].

7.5.2 Efficiency of solar thermal production in district heating

The thermal output of a solar panel is defined partly by the technical specifications of the individual panel
type, but also by the temperature conditions at a given point in time. The efficiency is depending on the
ambient temperature of the panel and the temperature of the working fluid in the panel. In a solar thermal
plant connected to district heating and in individual buildings, the efficiency will therefore be depending on
the supply and return temperatures of the given heating system. [50]

In Figure 101 the relation between the panel efficiency and the temperature conditions is described for
district heating scale solar panel types. The efficiency of the panel is described as a function of the
temperature difference between the medium working fluid temperature of the panel and the ambient air
temperature. It can be seen that for larger temperature differences between panel and air the efficiency
decreases. This is due to larger heat losses from the panel with a larger temperature difference. This also
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means that if the supply and return temperatures of the panel can be reduced, the general efficiency of the
panel will increase. Examples will be given in the following section.
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Figure 101: Efficiency of a solar panel as a function of the temperature difference between the medium panel temperature (Tm)
and the ambient air temperature (Ta). Replication of figure from [51].

7.5.3 Estimation of efficiency improvements for modelled case countries

To demonstrate the potential efficiency improvement of solar thermal production in district heating with
reduced temperature levels, it has been calculated for the four case countries; Denmark, Germany, Austria
and Italy, how the efficiencies would improve with lower supply and return temperatures.

The calculations have been performed using hourly data for one year of ambient air temperatures for the
four countries and for the supply and return temperatures of a typical district heating plant in Denmark. A
temperature set of 80°C in supply and 40°C in return (80/40) as annual averages are used as reference for
calculating the benefit of reduced temperatures. Four different alternative temperature sets are analysed;
High (100/50), Medium (70/35), Low (55/25) and Ultra-Low (45/25). The same solar collector type is used for
all temperature levels, even though the Low and Ultra-Low temperature levels systems might benefit from
selecting a different collector type optimised for low temperature operation.

In Table 26 the results of the calculations are presented. The ambient temperature is the only parameter that
differentiates the results between the countries in this analysis, so therefore annual averages of the applied
temperature series are included in the table.

Table 26: Average annual efficiency improvement of solar thermal production with reduced temperatures in a district heating
network compared to the reference case.

Denmark Germany Austria Italy
Average ambient [°C] 8.6 10.3 10.8 14.2
temperature
High (100/50) [%] -13.0 -13.0 -12.8 -12.5
Medium (70/35) [%] 6.1 6.1 6.0 5.9
Low (55/25) [%] 15.7 15.7 15.5 15.1
Ultra-Low (45/25) [%] 19.3 19.3 19.1 18.5

It can be seen that the efficiency of solar thermal production can be improved significantly by lowering the
temperatures of the district heating. The benefit is slightly decreasing going from Denmark towards Italy, but
in this connection it should be kept in mind that the efficiency in Italy and areas with warmer climate, the
efficiency of the solar thermal production, will already be higher than those for colder areas because of the
lower temperature difference between ambient air and solar panel, as discussed earlier.
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In Table 27 the consequences for a solar thermal plant with an annual production of 10 GWh assuming the
reference temperature set (80/40) when changing the temperatures in the district heating network.

Table 27: Production capacity and annual production for reduced temperature sets in the case countries for a solar thermal plant
with a peak production of 10MW,, at the reference temperature set.

Denmark Germany Austria Italy
High (100/50) [GWh] 8.7 8.7 8.7 8.8
Reference (80/40) [GWh] 10.0 10.0 10.0 10.0
Medium (70/35) [GWh] 10.6 10.6 10.6 10.6
Low (55/25) [GWh] 11.6 11.6 11.5 11.5
Ultra-low (45/25) [GWh] 11.9 11.9 11.9 11.9

The potential improvement in efficiency can also be seen as a potential for reducing the size of a planned
solar thermal plant and thereby reducing the investment costs. For example, if a solar thermal plant is being
planned and reduced temperatures in the district heating network are also considered, the planned capacity
of the solar thermal plant may be reduced, when taking in account the potential increased production.
Furthermore, the capacities of possible thermal storages in connection to the solar thermal plant can be
utilised better with lower temperatures, and the planned capacity of a connected thermal storage may
therefore also be reduced.

7.5.4 Energy system consequences and 4th generation district heating

Reduced temperatures in district heating systems will have a range of different benefits to the energy system
outside the district heating system itself. Reduced heat losses from the pipe networks and improved
efficiencies of production units are the main benefits, resulting in lower primary energy consumption. This
changes the dynamics in the energy system from hour to hour and from season to season. For example; if
solar thermal plants are producing more, then a CHP plant may be producing less, because the heat demand
will be covered from the solar thermal. The electricity that the CHP plant would have produced will have to
be produced in an alternative way, e.g. a solar PV plant or a condensing power plant.

Low temperature district heating is today starting to be implemented in different places and the changes this
causes should be taken into account when planning for future district heating production capacity and
distribution systems, since these are long term investments. The feasibility of solar thermal may also change;
in some district heating systems it can get more feasible because of the improved efficiency. In other systems
it may be less feasible. For example, in a system with utilisation of industrial waste heat, that also may
increase its efficiency which in combination with reduced heat losses will limit the remaining heat demand
to cover with solar thermal.

4™ generation district heating is a concept that focuses on low temperature heating in the networks,
integration of energy sectors and introduction of new and renewable heat sources [52]. This is a future vision
of how district heating should develop to fit into a renewable energy system in the future. This is a more cost
effective and more resource efficient way of supplying heat in future energy systems than conventional
district heating and alternatives to district heating. As mentioned, it is important to have the long term goal
in mind when planning the district heating system, to be able to utilise the synergies of integrating solar
thermal in appropriate places and avoiding sub-optimisation in the system.
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8 Conclusions and recommendations

The objective of this study has been to analyse the role of solar thermal in the energy system with a horizon
of 2050. This has been carried out by analysing the entire energy system at once including all energy
sectors on an hour-by-hour temporal resolution.

For various energy system types across different countries the role of solar thermal in individual buildings
and in district heating networks has been analysed. Furthermore, the role of solar thermal has been
analysed within different energy system types, including: 1) systems analogous to the current energy
systems and 2) future energy systems with lower heat demands, higher shares of district heating and with a
significantly higher renewable energy share.

Three types of analysis were performed assessing the impact on the energy systems in terms of heat
supply, electricity production, primary energy, CO,-emissions and socio-economic costs (the total energy
system costs including investments, operation and maintenance, fuel costs, CO,-costs and electricity
exchange). The first analysis investigated the marginal impact of installing 1 TWh of solar thermal, the
second analysis the maximum solar thermal potential that might be installed in the countries and the third
analysis looked into the impact of installing the maximum solar thermal potential.

The technical solar thermal potentials for each country with a solar thermal penetration rate of 20-50% are:
e Germany: 15-60 TWh/year or 3-11% of the total heat production
e Austria: 2-7 TWh/year or 4-12% of the total heat production
e Italy: 8-24 TWh/year or 2-10% of the total heat production
e Denmark: 2-5 TWh/year or 3-10% of the total heat production

The overall conclusion from the study is that solar thermal has a role to play in a future energy
system by 1) easing the pressure on scarce resources and 2) supplying heat where no alternative heating
sources are available. Installing solar thermal could increase the socio-economic costs, but this is highly
impacted by the energy system configuration. The results show that the overall solar thermal potential
across the countries and various energy system types is in the range of 3-12% of the total heat production.
The socio-economic costs are higher in a high-renewable energy system compared to installing solar
thermal in the current energy systems. Similarly, the advantages of solar thermal reduce in terms of
reductions of fossil fuels and CO;-emissions when transitioning towards a high-renewable energy system.

The main conclusions and recommendations from the solar thermal analysis are outlined below.

8.1 The energy system design is crucial in terms of solar thermal feasibility

Solar thermal replaces other types of heat supply in the energy system when installed (e.g. CHP, heat pumps,
boilers) and it is vital to identify these technologies. The replaced technologies determine the impacts on the
energy system in terms of primary energy, CO,-emissions and socio-economic costs. The analysis proved that
in certain cases the CO;-emissions might even increase when installing solar thermal because this could lead
to decreased electricity production from CHP plants (which typically consume oil and natural gas) which is
replaced by condensing coal power plants. Hence, solar thermal has to be seen as part of a general transition
towards renewable energy sources. The technologies that are directly and indirectly replaced by solar
thermal therefore have to be considered for the specific energy system before solar thermal is installed.
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8.2 The solar thermal penetration is crucial for the solar thermal potential

The solar penetration rate refers to the share of buildings that are supplied by solar thermal plants (either
directly on a roof or via district heating networks). The solar thermal potential that could be installed showed
a significant difference depending on the solar penetration rate. The solar thermal penetration proved
essential since a high solar thermal penetration allows for the solar thermal production to be distributed to
more users and thereby reducing the overproduction in peak production periods.

8.3 Based on the analyses in this report the technical solar thermal potential is in the range of 3-12% of
the heat production

The technical solar thermal potential was assessed using the solar penetration rate, mismatch between
district heating production and demand and the solar thermal overproduction. It was found that the solar
thermal potential can cover a larger share of the district heating demands than in the individual areas.
Moreover, it was concluded that 1) the largest solar thermal potentials exist in the countries with the highest
heat demands and 2) the solar thermal shares that can be installed across the countries is rather similar.
Furthermore, heat savings in buildings reduces the amount of solar thermal that can be installed, but
increases the proportion of solar thermal possible in the energy system. With a solar penetration rate of 20%
the solar thermal potential might be 3-6% of the total heat production, while a solar penetration rate of 35%
means a potential of 5-8%. When assuming a higher solar penetration rate of 50% the solar potential might
increase to 6-12% of the total heat production in the energy system.

8.4 Installing solar thermal could lead to higher energy system socio-economic costs

The findings in the report proved that by installing solar thermal this could increase the total socio-economic
cost of the energy system irrespective of the country and the scenario. However, there is a significant
difference between installing solar thermal in the individual and the district heating areas where the latter
proves better total socio-economic costs. In the individual areas, the total energy system socio-economic
costs increase 0-1% when installing the maximum solar thermal potential. In the district heating areas, in
some countries the cost increases and in others they decrease. Factors that influence this include for example
the solar thermal production costs and the price of the replaced fuels. When the maximum solar thermal
potentials are installed for both individual and district heating areas it was found that this will lead to
increased socio-economic costs for 17 of the 20 analysed scenarios. With higher fuel prices than current
prices this conclusion also applies. If the investment prices for solar thermal decrease by 25% and 50% further
below the 2050 prices, the socio-economy is improved. This does however not occur in the high-renewable
scenario where the full extent of solar thermal potential is installed and it remains more expensive than
installing no solar thermal.

8.5 Solar thermal could ease the pressure on scarce renewable resources such as biomass

It is crucial to ease the pressure on scarce resources such as biomass (used for heating and electricity) as well
as renewable electricity (used for heat pumps) as these resources will be in high demand in all energy sectors
in the future. When solar thermal is installed, the consumption of biomass decreases for both individual and
district heating areas in systems that are analogous to the energy system of today as well as in energy systems
with high-renewable energy. In this study, it was concluded that when installing the maximum solar thermal
potential, the biomass demand could be reduced by 0-2%. More solar thermal could be installed if the aim is
to further reduce the biomass consumption. Similar savings can be obtained for fossil fuel reductions from
installing solar thermal.
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8.6 Solar thermal will be competing with other renewable sources in a high-renewable energy
system

Other types of renewable energy sources might provide similar energy system services as solar thermal does
and these might start competing with solar thermal. These sources can include geothermal heating, waste-
to-energy, industrial excess heating and heat pumps supplied by renewable energy. These technologies might
compete in terms of cost of supplying heat, impacts on the flexibility of the system (baseload and fluctuating
production) as well as for space for installing solar thermal versus photovoltaic systems. These technologies
are likely to be available near larger cities so therefore in order for solar thermal to be most useful, it could
be installed in areas where these heating sources are unavailable for district heating.

8.7 Some advantages of solar thermal decrease in a high-renewable energy system

When progressing towards a high-renewable energy system new types of energy sources will start supplying
parts of the energy demands. In a high-renewable energy system no fossil fuels will be consumed and
therefore solar thermal will compete with and replace other types of renewable energy sources. This means
that when installing solar thermal there is no reduction of fossil fuels and no further reduction of CO,-
emissions (assuming biomass has no CO,-emissions). In addition, a high-renewable energy system is less
flexible due to 1) fluctuating renewable electricity sources that impact the operation of CHP and heat pumps
and 2) more renewable baseload technologies are integrated into the system such as geothermal, waste-to-
energy and industrial excess heat making the district heating production less flexible and thereby reducing
the potential for solar thermal.

8.8 A full energy system perspective is required to analyse the feasibility of solar thermal

By analysing the entire energy system at once it is possible to capture the dynamics occurring across energy
sectors such as the operation of CHP plants and how this impacts the electricity sector. Furthermore, it allows
an understanding of the feasibility of different energy storages and the integration of renewable electricity
such as wind power connected to the heat sector through the use of heat pumps. If the entire energy system
is not analysed at once a variety of important dynamics cannot be identified thereby overlooking the indirect
impacts of solar thermal on the energy system.

8.9 The findings in this study apply to a variety of energy system types

The analysis in this study provides a set of clear results based on a coherent method about the extent in
which solar thermal could be installed in four different countries with different conditions. These countries
differ in terms of climates, energy demands and energy system design (some are based mainly on individual
natural gas supply, others on hydro power, wind power and district heating). In addition, multiple scenarios
have been analysed for 1) other possible developments in the future energy systems and for 2) the influence
of different fuel and solar thermal prices.

The variety of energy system types analysed allowed for making general conclusions regarding the role of
solar thermal in future energy systems. This might indicate that the findings can be applied to a variety of
energy systems, including countries that are not directly part of this study.

8.10 Factors that might improve solar thermal feasibility

The study has identified a number of factors that could increase the feasibility of solar thermal in the future.
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» In high-renewable energy systems of the future it is unlikely that there are sufficient renewable
energy resources, especially regarding biomass. Solar thermal can play a role in reducing the
consumption of biomass in the heating sector since biomass should not be prioritised for heating
purposes. Rather it should be reserved for other sectors such as transport and industry where few
alternatives exist. This might increase the solar thermal potentials identified in the study.

» The reduction of investment prices and improved technological efficiency of solar thermal will
improve its feasibility, however very significant cost reductions are required to make solar thermal
investments socio-economic feasible in the simulations.

» The relation between baseload heat production and the flexibility in the system is decisive for how
much solar thermal can be installed in the system. If less baseload resources are installed the
potential of solar thermal might increase.

» In the future, the temperature of the district heat supply might potentially be lowered and this
could impact the efficiency and costs of the solar thermal production. It will improve the feasibility
of solar thermal, but it requires lower temperatures in the district heating networks and buildings
with lower heat demands (which will most likely mainly take place in new buildings).

» In this report, the potential for solar thermal was investigated for the heating sector but solar
thermal could supply other sectors. For example, solar thermal might be utilised for cooling
purposes and for industrial purposes within a certain temperature range.

» By integrating seasonal heat storage into the energy system this can possibly increase the solar
thermal potential in district heating areas. However, due to space constraints and land prices this
technology is primarily used in smaller district heating networks outside the larger cities. In
Denmark around ~35% of the district heating demand is supplied by decentralised technologies
outside the larger cities. Examples can here be found of seasonal storages in connection with solar
thermal plants allowing for higher solar fractions and a more flexible district heating production.
However, compared with installing solar thermal for district heating with diurnal storages, in the
present analysis this solution was found to be more costly, but could possibly also provide other
benefits in the forms of fuel savings and improved system flexibility.

8.11 Further research

It is recommended that further research is carried out to continue developing the knowledge about the role
of solar thermal in the future energy system. Some positive externalities related to solar thermal exist that
were not been considered in this study, which might improve the feasibility of solar thermal.

» For example, solar thermal could contribute to enhancing the security of supply by increasing local
energy production and thereby reducing the dependency on fuel import. In addition, solar thermal
can reduce greenhouse gas emissions and particle emissions by replacing heat supply from wood
stoves and individual boilers and thereby contribute to improving health conditions.

» This study has been based on a national energy system perspective analysing the entire energy
system of a country. However, local variations might apply meaning that solar thermal could be
feasible in local energy systems and in these areas, have higher potentials than the aggregated
national solar thermal potentials.

» Other technologies can be installed in connection with solar thermal which could create more
flexible and efficient systems. These could include solar thermal combined with PV systems or solar
thermal plants combined with heat pumps. These combinations were not included in this study and
should be studied further.

» Another factor that might impact the feasibility of solar thermal is the available space on roof tops
and in open fields. Some of these areas might be prioritised for the installation of PV, and therefore
a deeper analysis into the implication of this conflict is necessary.
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» This study applied a socio-economic perspective in order to identify the overall feasibility of solar
thermal installations for society. However, this might not align with private-economic incentives
and this could be studied further. The difference between private- and socio-economic feasibility is
caused by the political framework and has significant influence on the spread of solar thermal
technologies. For example, solar thermal might be installed due to beneficial subsidy schemes,
regulations or taxes on fuels, however these factors will change when looking towards 2050.

» The findings in this study apply for solar thermal technologies and should be accompanied by
additional analyses on the role of other renewable energy sources in order to develop a feasible
transition pathway to a high-renewable energy system in the future.
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10 Appendix A — cost database

Preface
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maintenance, and lifetimes for all technologies for the years 2020, 2030, and 2050. Where data could not be
obtained for 2030 or 2050, a 2020 cost is often assumed.
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C, Kaspersen P, Hansen K. CEESA 100% Renewable Energy Transport Scenarios towards
2050. Aalborg University, 2014. Available from: http://www.ceesa.plan.aau.dk/.

e COWI. Alternative drivmidler i transportsektoren (Alternative Fuels for Transport). Danish
Energy Agency, 2008. Available from: http://www.ens.dk/.
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Introduction

The EnergyPLAN tool contains five tabsheets under the main ‘Cost’ tabsheet, which are:

e General
e |nvestment and Fixed OM
e Fuel

e Variable OM
e External electricity market

The Investment and Fixed OM tabsheet further contains ten sub-tabsheets that relates to different
technology groups such as Heat and Electricity, Renewable Energy, Heat infrastructure, Road vehicles,
Additional, etc.

Within each of these, the user can enter over 200 inputs depending on the range of technologies being
considered in an analysis. When completing an energy systems analysis, it is often necessary to change the
cost data in EnergyPLAN for a variety of reasons: for example, to analyse the same system for a different year
or to analyse the sensitivity of the system to different costs. To accommodate this, EnergyPLAN enables the
user to change the cost data within a model, without changing any of the data under the other tabsheets. To
do so, one has to go to the Cost-> General tabsheet and activate one of the two buttons “Save Cost Data” or
“Load New Cost Data”.

1l EnergyPLAN 12.0: Startdata &%
ﬁ = EnergyPLAN 12.0: Startdata
Home | AddOnTools  Help (7]
@ Open = g — = [ show Hints™
AR GFG 0B @56
Home  New Import Settings Notes  Web Run Run Run Run Treeview | Tabs
fomexcel Bl Save s (Clipboard) (Screen) (Print)  (Serial)
General Run View
\Wanings Appear Here:
; [«]
5 Overview
#I- Demand Save Cost Data Load New Cost Data

- Supply
- Balancing and Storage: =
2 Cost Fived aperation and MaTErance SO0 are 1equiied even i the plant s nat aperated

Vatiable operation and maintenance costs are only necessaty f the plant operates and are directly proporional to the number of hours that the plant operates.

) Investment and Fized OM

-+ Heat and Electicity Business economic operation: Socio economic consequenses:
Renewable Eneray &l costs [fuel, handiing and taxes| are included Taxes are not included when the socio economic
Linuid and Gas Fuels in the marginal casts when optimal operation consequenses are caloulated
Heat Infrastructure strategies for the individual plants aie decided.

- Rioad Vehicles
Dther Vehicles
Transpoit Infastiucture

. Other Infrastructure C02 Price (included in marginal production prices] |0 (DKKACO2)
fater
Additional
el Interest (2 [0
Variable Oh
Entemal Electicty Market
= Simulation
Qutput
Investment Fixed Oper. and M. —
Bum Annual Costs Sum Annual Costs
0 (MDKKjyear) 0 (MDKKjyear)

When activating one of these buttons, the user will be brought to the ‘Cost’ folder where one can either save
a new cost data file or load an existing one. It is important to note that when you are saving a file, you should
always specify a filename with .txt at the end of the name, as otherwise it may not save correctly.
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Even with this function, collecting cost data is still a very time-consuming task and hence, the EnergyPLAN
Cost Database has been developed. This database includes cost data for almost all of the technologies
included in EnergyPLAN based primarily on publications released by the Danish Energy Agency. This
document gives a brief overview of this data.
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Country cases for Germany, Austria, Italy and Denmark

EnergyPLAN Cost Database

To date, the EnergyPLAN Cost Database consists of the following files:

e 2020EnergyPLANCOsts.txt
e 2030EnergyPLANCoOsts.txt
e 2050EnergyPLANCOsts.txt

The file name represents the year which the costs are for. These are recommended based on the literature reviewed by the EnergyPLAN team and it is
the users responsibility to verify or adjust them accordingly. To date, the principal source for the cost data has been the Danish Energy Agency (DEA)
[1], although a variety of other sources have been used where the data necessary is not available. Below is an overview of the data used to create the

EnergyPLAN Cost Database, although it should be noted that this data is updated regularly, so there may be slight differences in the files provided.

Fuel Costs

The fuel prices assumed in the EnergyPLAN Cost Database are outlined in Table 28. Since the DEA only project fuel prices to 2030, the fuel prices in 2040
and 2050 were forecasted by assuming the same trends as experiences in the period between 2020 and 2030. These forecasts can change dramatically
from one year to the next. For example, between January and August of 2012, the average oil price was $106/bbl, which is much closer to the oil price

forecasted for 2020 than for the 2011 oil price.

Table 28: Fuel prices for 2011, 2020, 2030, 2040, and 2050 in the EnergyPLAN Cost Database [2, 3].

(2009-€/G)) (o] Natural | Coal Fuel Diesel | Petrol Jet Straw Wood Wood Energy Nuclear

Year (USS)/be Gas (o] Fuel Chips Pellets Crops

2011 82.0 5.9 2.7 8.8 11.7 11.9 12.7 3.5 4.5 9.6 4.7 1.5
2020 107.4 9.1 3.1 11.9 15.0 15.2 16.1 3.9 5.1 10.2 4.7 1.5
2030 118.9 10.2 3.2 133 16.6 16.7 17.6 4.3 6.0 10.9 5.2 1.5

Projected assuming the same trends as in 2020-2030

2040 130.5 11.2 33 14.7 18.1 18.2 19.1 4.7 6.8 11.5 5.7 1.5
2050 142.0 12.2 3.4 16.1 19.6 19.7 20.6 5.1 7.6 12.2 6.3 1.5
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Fuel handling costs were obtained from the Danish Energy Agency [3]. They represent the additional
costs of handling and storing fuels for different types of consumers as well as expected profit margins.

Table 29: Fuel handling costs for 2020 in the EnergyPLAN Cost Database [3].

2009 - €/G)J Centralised Power Decentralised Power Plants Consumer
Foel Plants & Industry
Natural Gas 0.412 2.050 3.146
Coal - - -
Fuel Oil 0.262 - -
Diesel/Petrol 0.262 1.905 2.084
Jet Fuel - - 0.482
Straw 1.754 1.216 2.713
Wood Chips 1.493 1.493
Wood Pellets - 0.543 3.256
Energy Crops 1.493 1.493

The cost of emitting carbon dioxide is displayed in Table 30 and the CO, emission factors used for each
fuel are outlined in Table 31.

Carbon Dioxide Costs and Emissions

Table 30: Carbon dioxide prices for 2011, 2020, 2030, 2040, and 2050 in the EnergyPLAN Cost Database [3].

2009-€/Ton CO2 Price
2011 15.2
2020 28.6
2030 34.6

Projected assuming the same trends
as in 2020-2030

2040

40.6

2050

46.6

Table 31: Carbon dioxide emission factors for different fuels in the EnergyPLAN Cost Database [4].

Fuel Coal/Peat Oil Natural Waste LPG
Gas
Emission Factor (kg/GJ) 98.5 72.9 56.9 32.5 59.64
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Variable Operation and Maintenance Costs

In the Operation tabsheet, the user inputs the variable operation and maintenance costs for a range
of technologies. Variable O&M costs account for the additional costs incurred at a plant when the plant
has to run such as more replacement parts and more labour. Those available in the EnergyPLAN Cost
Database are outlined in Table 32.

Table 32: Variable operation and maintenance costs assumed for 2020 in the EnergyPLAN Cost Database.

Sector Unit Varla(kz/e'v?\;t\;lr\]/; Cost
Boiler* 0.15
District CHP* 2.7
Heating and
CHP Systems Heat Pump 0.27
Electric Heating 0.5
Hydro Power 1.19
Condensing* 2.654
Power Plants Geothermal 15
GTL M1 1.8
GTL M2 1.008
Electrolyser 0
Pump 1.19
Storage Turbine 1.19
V2G Discharge
Hydro Power Pump 1.19
Boiler
Hp Accounted for under
individual c individual heating costs
Heat Pump in tkgbASoll“o(I;:tonal
Electric Heating

*These costs need to be calculated based on the mix of technologies in the energy system, which can vary
substantially from one system to the next.

Investment Costs

Table 33 outlines the investment costs in the EnergyPLAN Cost Database for the different technologies
considered in EnergyPLAN. Note that different technology costs are expressed in different units, so
when defining the capacity of a technology, it is important to use the same unit in for the technical
input as in the cost input.
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Table 33: Investment costs for 2020, 2030, and 2050 in the EnergyPLAN Cost Database.

Unit: M€/Unit Unit 2020 2030 2050
Small CHP MWe 1.2 1.2 1.2
Large CHP MWe 0.8 0.8 0.8
Heat Storage CHP GWh 3.0 3.0 3.0
Waste CHP TWh/year 215.6 | 215.6 | 215.6
Absorption Heat Pump MWth 0.4 0.4 0.4
Heat Pump Group 2 MWe 3.4 3.4 2.9
> Heat Pump Group 3 MWe 3.4 3.3 2.9
:g DHP Boiler Group 1 MWth 0.100 | 0.100 | 0.100
%‘3 Boilers Group 2 & 3 MWsth 0.075 | 0.100 | 0.100
f Electric Boiler MWth 0.100 | 0.075 | 0.075
;:‘3 Large Power Plants MWe 0.99 0.98 0.9
Nuclear MWe 3.6 3.6 3.0
Interconnection MWe 1.2 1.2 1.2
Pump MWe 0.6 0.6 0.6
Turbine MWe 0.6 0.6 0.6
Pump Storage GWh 7.5 7.5 7.5
Industrial CHP Electricity TWh/year 68.3 68.3 68.3
Industrial CHP Heat TWh/year 68.3 68.3 68.3
Wind Onshore MWe 1.3 13 1.2
Wind Offshore MWe 2.4 2.3 2.1
Photovoltaic MWe 1.3 1.1 0.9
Wave Power MWe 6.4 3.4 1.6
Tidal MWe 6.5 5.3 5.3
g" CSP Solar Power MWe 6.0 6.0 6.0
S River Hydro MWe 3.3 3.3 3.3
i: Hydro Power MWe 33 3.3 33
: Hydro Storage GWh 7.5 7.5 7.5
é Hydro Pump MWe 0.6 0.6 0.6
Geothermal Electricity MWe 4.6 4.0 4.0
Geothermal Heat TWh/year 0.0 0.0 0.0
Solar Thermal TWh/year 386.0 | 307.0 | 307.0
Heat Storage Solar GWh 3.0 3.0 3.0
Industrial Excess Heat TWh/year 40.0 40.0 40.0
o Biogas Plant TWh/year 240 240 240
g " Gasification Plant MW Syngas 0.4 0.3 0.3
_‘E § Biogas Upgrade MW Gas Out 0.3 0.3 0.3
> Gasification Gas Upgrade MW Gas Out 0.3 0.3 0.3
= 2nd Generation Biodiesel Plant MW-Bio 3.4 2.5 1.9
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Biopetrol Plant MW-Bio 0.8 0.6 0.4

Biojetpetrol Plant MW-Bio 0.8 0.6 0.4

CO2 Hydrogenation Electrolyser MW-Fuel 0.9 0.6 0.4

Synthetic Methane Electrolyser MW-Fuel 0.0 0.0 0.0

Chemical Synthesis MeOH MW-Fuel 0.6 0.6 0.6

Alkaline Electrolyser MWe 2.5 0.9 0.9

SOEC Electrolyser MWe 0.6 0.4 0.3

Hydrogen Storage GWh 20.0 20.0 20.0

Gas Storage GWh 0.1 0.1 0.1

Oil Storage GWh 0.0 0.0 0.0

Methanol Storage GWh 0.1 0.1 0.1

o Individual Boilers 1000 Units 6.1 0.0 0.0

- % Individual CHP 1000 Units 12.0 0.0 0.0
§ g Individual Heat Pump 1000 Units 14.0 0.0 14.0

qg Individual Electric Heat 1000 Units 8.0 0.0 0.0
Individual Solar Thermal TWh/year 1700.0 | 1533.3 | 12333

Bicycles 1000 Vehicles 0.0 0.0 0.0

Motorbikes 1000 Vehicles 6.0 6.0 6.0

;g Electric Cars 1000 Vehicles 18.1 18.1 18.1
< Conventional Cars 1000 Vehicles 20.6 20.6 20.6
-E Methanol/DME Busses 1000 Vehicles 177.2 177.2 177.2
2 Diesel Busses 1000 Vehicles 177.2 177.2 177.2
Methanol/DME Trucks 1000 Vehicles 99.2 99.2 99.2

Diesel Trucks 1000 Vehicles 99.2 99.2 99.2

EJ, Desalination 1000 m3 Fresh Water/hour 0.1 0.1 0.1

g Water Storage Mm3 0.0 0.0 0.0

*Power plant costs need to be calculated based on the mix of technologies in the energy system, which can
vary substantially from one system to the next.

Fixed Operation and Maintenance Costs

Unit: % of Investment Unit 2020 | 2030 | 2050

Small CHP MWe 3.75 3.75 3.75

Large CHP MWe 3.66 3.66 3.80

.4?) Heat Storage CHP GWh 0.70 0.70 0.70
43 Waste CHP TWh/year 7.37 7.37 7.37
&) Absorption Heat Pump MWsth 4.68 4.68 4.68
oé Heat Pump Group 2 MWe 2.00 2.00 2.00
T Heat Pump Group 3 MWe 2.00 2.00 2.00
DHP Boiler Group 1 MWsth 3.70 3.70 3.70

Boilers Group 2 & 3 MWth 1.47 3.70 3.70
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Electric Boiler MWth 3.70 1.47 1.47

Large Power Plants MWe 3.12 3.16 3.26

Nuclear MWe 2.53 2.49 1.96

Interconnection MWe 1.00 1.00 1.00

Pump MWe 1.50 1.50 1.50

Turbine MWe 1.50 1.50 1.50

Pump Storage GWh 1.50 1.50 1.50

Industrial CHP Electricity TWh/year 7.32 7.32 7.32

Industrial CHP Heat TWh/year 7.32 7.32 7.32

Wind Onshore MWe 3.05 2.97 3.20

Wind Offshore MWe 2.97 3.06 3.21

Photovoltaic MWe 2.09 1.38 1.15

Wave Power MWe 0.59 1.04 1.97

Tidal MWe 3.00 | 3.66 | 3.66

& CSP Solar Power MWe 821 | 821 | 821
& River Hydro MWe 2.00 | 2.00 | 2.00
= Hydro Power MWe 2.00 | 2.00 | 2.00
z Hydro Storage GWh 1.50 | 1.50 | 1.50
,§Cé Hydro Pump MWe 1.50 1.50 1.50
Geothermal Electricity MWe 3.50 3.50 3.50
Geothermal Heat TWh/year 0.00 0.00 0.00

Solar Thermal TWh/year 0.13 0.15 0.15

Heat Storage Solar GWh 0.70 0.70 0.70

Industrial Excess Heat TWh/year 1.00 1.00 1.00

Biogas Plant TWh/year 6.96 6.96 6.96

Gasification Plant MW Syngas 5.30 | 7.00 | 7.00

Biogas Upgrade MW Gas Out 15.79 | 17.65 | 18.75

Gasification Gas Upgrade MW Gas Out 15.79 | 17.65 | 18.75

2nd Generation Biodiesel Plant MW:-Bio 3.01 3.01 3.01

" Biopetrol Plant MW-Bio 7.68 7.68 | 7.68
E:J Biojetpetrol Plant MW-Bio 7.68 7.68 7.68
§ CO2 Hydrogenation Electrolyser MW-Fuel 2.46 3.00 3.00
T Synthetic Methane Electrolyser MW-Fuel 0.00 0.00 0.00
_-g Chemical Synthesis MeOH MW-Fuel 3.48 3.48 3.48
.§' Alkaline Electrolyser MWe 4.00 4.00 4.00
SOEC Electrolyser MWe 2.46 3.00 3.00

Hydrogen Storage GWh 0.50 0.50 0.50

Gas Storage GWh 1.00 1.00 1.00

Oil Storage GWh 0.63 0.63 | 0.63

Methanol Storage GWh 0.63 0.63 0.63
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o Individual Boilers 1000 Units 1.79 | 0.00 | 0.00

- % Individual CHP 1000 Units 0.00 | 0.00 | 0.00
;:3 g Individual Heat Pump 1000 Units 0.98 0.00 0.98
% Individual Electric Heat 1000 Units 1.00 | 0.00 | 0.00
Individual Solar Thermal TWh/year 1.22 1.35 1.68

Bicycles 1000 Vehicles 0.00 | 0.00 | 0.00

Motorbikes 1000 Vehicles 5.00 | 5.00 | 5.00

é Electric Cars 1000 Vehicles 6.99 4.34 4.34
S Conventional Cars 1000 Vehicles 4.09 | 4.09 | 4.09
-E Methanol/DME Busses 1000 Vehicles 9.14 9.14 9.14
2 Diesel Busses 1000 Vehicles 9.14 | 9.14 | 9.14
Methanol/DME Trucks 1000 Vehicles 21.10 | 21.10 | 21.10

Diesel Trucks 1000 Vehicles 21.10 | 21.10 | 21.10

Lifetimes

Unit: Years Unit 2020 | 2030 | 2050

Small CHP MWe 25 25 25

Large CHP MWe 25 25 25

Heat Storage CHP GWh 20 20 20

Waste CHP TWh/year 20 20 20

Absorption Heat Pump MWth 20 20 20

Heat Pump Group 2 MWe 25 25 25

- Heat Pump Group 3 MWe 25 25 25
:§ DHP Boiler Group 1 MWth 35 35 35
E Boilers Group 2 & 3 MWth 20 35 35
ou; Electric Boiler MWth 35 20 20
§ Large Power Plants MWe 27 27 27
* Nuclear MWe 30 30 30
Interconnection MWe 40 40 40

Pump MWe 50 50 50

Turbine MWe 50 50 50

Pump Storage GWh 50 50 50

Industrial CHP Electricity TWh/year 25 25 25

Industrial CHP Heat TWh/year 25 25 25

= Wind Onshore MWe 20 25 30
e Wind Offshore MWe 20 25 30
9 Photovoltaic MWe 30 | 30 | 40
_‘E Wave Power MWe 20 25 30
= Tidal MWe 20 | 20 | 20
= CSP Solar Power MWe 25 25 25
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River Hydro MWe 50 50 50
Hydro Power MWe 50 50 50
Hydro Storage GWh 50 50 50
Hydro Pump MWe 50 50 50
Geothermal Electricity MWe 20 20 20
Geothermal Heat TWh/year 0 0 0
Solar Thermal TWh/year 30 30 30
Heat Storage Solar GWh 20 20 20
Industrial Excess Heat TWh/year 30 30 30
Biogas Plant TWh/year 20 20 20
Gasification Plant MW Syngas 25 25 25
Biogas Upgrade MW Gas Out 15 15 15
Gasification Gas Upgrade MW Gas Out 15 15 15
2nd Generation Biodiesel Plant MW-Bio 20 20 20
< Biopetrol Plant MW-Bio 20 20 20
= Biojetpetrol Plant MW-Bio 20 | 20 | 20
] CO2 Hydrogenation Electrolyser MW-Fuel 20 15 15
?U Synthetic Methane Electrolyser MW-Fuel 0 0 0
% Chemical Synthesis MeOH MW-Fuel 20 20 20
=) Alkaline Electrolyser MWe 28 28 28
SOEC Electrolyser MWe 20 15 15
Hydrogen Storage GWh 30 30 30
Gas Storage GWh 50 50 50
Oil Storage GWh 50 50 50
Methanol Storage GWh 50 50 50

o Individual Boilers 1000 Units 21

» g Individual CHP 1000 Units 10
§ g Individual Heat Pump 1000 Units 20 20
£ Individual Electric Heat 1000 Units 30 0
Individual Solar Thermal TWh/year 25 30 30
Bicycles 1000 Vehicles 0 0
Motorbikes 1000 Vehicles 15 15
é Electric Cars 1000 Vehicles 16 16 16
S Conventional Cars 1000 Vehicles 16 16 16
-E Methanol/DME Busses 1000 Vehicles 6 6 6
< Diesel Busses 1000 Vehicles 6 6 6
Methanol/DME Trucks 1000 Vehicles 6 6 6
Diesel Trucks 1000 Vehicles 6 6 6
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Additional Tabsheet

The additional tabsheet under the Investment and Fixed OM tabsheet can be used to account for costs
which are not included in the list of technologies provided in the other tabsheets. Typically these costs
are calculated outside of the EnergyPLAN tool and subsequently inputted as a total. In the past, this
section has been used to include the costs of the following technologies:

e Energy efficiency measures

e Electric grid costs

¢ Individual heating costs

e Interconnection costs

e Costs for expansion of district heating and cooling

Some of these costs vary dramatically from one energy system to the next and hence they are not
included in the cost files which can be loaded into EnergyPLAN. However, below are some costs which
may provide a useful starting point if additional costs need to be estimated.

Heating

Individual heating can be considered automatically by EnergyPLAN or added as an additional cost. To
use the automatic function, you must specify an average heat demand per building in the Individual
heating tabsheet. Using this, in combination with the total heat demand, EnergyPLAN estimates the
total number of buildings in the energy system. This is illustrated in the Cost->Investment and Fixed
OM ->Heat infrastructures window. The price presented in Table 33 above represents the average cost
of a boiler in a single house, which is used to automatically estimate the cost of the heating
infrastructure. This is a fast method, but it can overlook variations in the type of boilers in the system.
For example, some boilers will be large common boilers in the basement of a building rather than an
individual boiler in each house.

To capture these details, we recommend that you build a profile of the heating infrastructure outside
of the EnergyPLAN tool and insert the costs as an additional cost. Below in Table 34 are a list of cost
assumptions you can use if you do this.
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Table 34: Individual heating unit costs for 2020 in the EnergyPLAN Cost Database [17].

Parameter Oil Natural | Biomas | Heat | Heat | Electri District
boile gas s boiler | pum | pum c heating
r boiler p p heatin | substatio
air- | brine g n
to- -to-
wate | wate
r r

Capacity of one unit (kW) 15- 3-20 5-20 10 10 5 10
30

Annual average efficiency (%) 100 100- 87 330 350 100 98
104

Technical lifetime (years) 20 22 20 20 20 30 20

Specific investment 6.6 5 6.75 12 16 4 2.5
(1000€/unit)

Fixed O&M (€/unit/year) 270 46 25 135 135 50 150

Variable O&M (€/MWh) 0.0 7.2 0.0 0.0 0.0 0.0 0.0

130




IEA SHC Task 52: Solar Thermal and Energy Economy in Urban Environments Error! No text of specified style in document.

Table 35: District heating network costs for 2020 in the EnergyPLAN Cost Database [17].

Technology Low-temperature DH network
Heat density an consumer (TJ/km? land area) 45-50

Net loss (%) 13-16

Average Technical lifetime (years) 40

Average Investment costs (1000 €/TJ) 145

Average Fixed O&M (€/TJ/year) 1100

Branch Piping (1000€/substation) 3
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11 Appendix B — solar thermal benchmark figures

The benchmarks presented in this chapter were derived from a set of best practice examples in
operation from countries participating in IEA-SHC Task 52 (AT, DE, and DK) [20]. In sum, 46 systems
covering seven all categories have been analyzed. For each system investigated at least the following
characteristics and key figures were determined:

Energy / technical data:

e Solar thermal system category

e Kind of solar thermal collector

o FPC—flat plate collector
o ETC - evacuated tube collector

e Kind of solar energy storage
domestic hot water tank (DHW-tank)
pressurized tank thermal energy storage (pressurized TTES)
non-pressurized tank thermal energy storage (non-pressurized TTES)
BTES — borehole thermal energy storage (only seasonal storages)
PTES — pit thermal energy storage (only seasonal storages)

o ATES —aquifer thermal energy storage (only seasonal storages)

e Size per unit in gross collector area [M?Zgross]
e Thermal peak capacity per unit [kW]
e Energy storage volume per unit [Itr.yoe]
e Annual useful solar energy supply per unit (Esoiar) [kWh/a]
e Specific energy storage volume per unit [Itr.y20e/M%gross)
e Typical solar energy yield SE [kWh/(m?%gross-a)]
e Typical solar fraction sf [%]
e Typical technical solar thermal system life time [yrs.]

O O O O O

Financial data:

e Specific cost per unit ready installed (excl. VAT, excl. subsidies) [1,000€/m?%g0ss]

e Specific cost per unit for material only (excl. VAT, excl. subsidies) [1,000€/m?goss]
o Cost (material) solar loop (collectors, steel structures, piping, control)
o Cost (material) storage (tank, insulation)

e Specific cost per unit for labor only (excl. VAT, excl. subsidies) [1,000€/m?gross)
o Labor required per unit (design, tendering, mounting, commissioning) [hrs.]
o Labor cost [€/hrs.] (excl. VAT)

e Fixed O&M cost per unit [€/a ]

e Variable O&M per unit [€/a ]

Levelized cost of solar thermal heat:
Based on the energy and financial data levelized cost of solar thermal heat (LCOHs7) were calculated

e LCOHsr per unit ready installed (excl. VAT, excl. subsidies) [€-ct/kWh]

Summary of characteristic techno-economic benchmark figures
In the following tables characteristic technical and financial benchmark figures are summarized for

e A)solar thermal systems in single and multi-family homes (Table 36)
e B) roof-mounted solar thermal systems connected to (block) heating grids (Table 37) and
e () ground-mounted solar thermal systems connected to (district) heating grids (Table 38)
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Table 36: Benchmarks for solar thermal systems in single and multi-family homes

DHW-SFH
Solar domestic hot
water systems in single
family homes

CS-SFH
Solar-combi systems in
single family homes

CS-MFH
Solar-combi systems in
multi-family homes

Solar thermal system category

All systems of this category are roof
mounted

with short-term (diurnal) storages

All systems of this category are equipped

Energy/technical data

- range (from - to)

(domestic hot water only)

(DHW + space heating)

Kind of solar thermal collector used FPC FPC FPC
optional ETC ETC ETC
Kind of solar energy storage used DHW-tank TTES (pressurized) TTES (pressurized)
Typical size per unit [M2g o] 7 18 100
- range (from - to) 5-10 12-24 30-300
?'Iz/vr:;]cal thermal peak capacity per unit 5 13 70
4-7 8-17 21-210
- range (from - to)
Typical storage volume per unit [ltr.] 400 1,500 9,000
Typical annual production per unit
(KWh/a] 2,625 5,940 39,500
.;fre;ﬂlzc sto]rage volume per unit 65 85 95
T s 50-80 60-110 70-120
- range (from - to)
'[I'szvp\v/l:]:;lrlnszolar/z?ergy yield SE 380 330 400
gross 330-430 310- 350 350 - 450
- range (from - to)
Typical solar fraction sf [-] 68% 20% 15%
60—-75% 15-40% 10-25%

(DHW + space heating)

Technical life time [years]

25

25

25

Financial data

Specific cost ready installed
[1,000€/m%gross] (eXCl. VAT, excl.
subsidies)

0.93 (+/- 13%)
(0.81 - 1.05)

0.76 (+/- 13%)
(0.67 - 0.86)

0.66 (+/- 21%)
(0.52 - 0.80)

Specific cost (material only)
[1,000€/m?gr0s] (excl. VAT, excl.
subsidies)

0.70 (+/- 6%)
(0.66 —0.74)

0.61 (+/- 8%)
(0.57 - 0.66)

0.55 (+/- 20%)
(0.44 - 0.66)

Labor required [hrs.]
Labor cost [€/hr.] (excl. VAT)

18 (+/- 6hrs)
90 (reference: AT)

30 (+/- 10hrs)
90 (reference: AT)

120 (+/- 30hrs)
90 (reference: AT)

Investment per unit ready installed

6.5 (+/-13%)

13.8 (+/-13%)

65.8 (+/-21%)

[1,000€/unit] (excl. VAT, excl. subsidies) (5.7-7.3) (12.0-15.5) (52.1-79.5)
Fixed O&M per unit [€/m?goss/a]* 7.0 6.1 5.5
Variable O&M per unit [€/m%grss/al** 1.4 1.2 1.4

Levelized cost of heat LCOH [€-ct/kWh]
- range (from - to)

16.2 (+/- 12%)
(14.3-18.1)

15.5 (+/- 12%)
(13.7-17.4)

11.2 (+/- 20%)
(8.9-13.4)

* 1% of net investment cost (excl. labor)

** Electricity for solar pump and control (around 1.5 kWh electrical / 100 kWh heat produced). Electricity: 24€-ct/MWh
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Table 37: Benchmarks for roof-mounted solar thermal systems connected to (block) heating grids

All systems of this category are roof-
mounted and may be equipped with either
- short-term (diurnal) storages (A) or
- long-term (seasonal) storages (B)
Energy/technical data A) with diurnal storage B) with seasonal storage
Kind of solar thermal collector used FPC FPC
optional ETC (ETC)
Kind of solar energy storage used pressurized TTES BTES
optional non-pressurized TTES non-pressurized TTES, PTES, ATES
Typical size per unit [MmZgross] 1,000 5,000
- range (from - to) 500 - 5,000 1,000 - 10,000
Typical thermal peak capacity per unit [kW] | 700 3,500
- range (from - to) 350 - 3,500 700 - 7,000
Typical storage volume per unit [m3.420e] 100 12,000
Typical annual production per unit [MWh/a] 390 1,500
Specific storage volume per unit [Itr./m?%;os] | 100 2,400
- range (from - to) 75-125 1,400 - 3,400
Typical solar energy yield SE [kWh/m?g.s/a] | 390 300
- range (from - to) 350 - 450 260 - 340
Typical solar fraction sf [-] 20% 50%
- range (from - to) 10-25% 40— 75% (up to 90%)
Technical life time [years] 25 25
Financial data A) with diurnal storage B) with seasonal storage
Specific cost ready installed [1,000€/M?%goss] 0.54 (+/- 22%) 0.64 (+/- 25%)
(excl. VAT, excl. subsidies) (0.42 - 0.66) (0.48 —0,80)
Specific cost (material only) [1,000€/m?Zgross] 0.47 (+/- 22%) 0.54 (+/- 25%)
(excl. VAT, excl. subsidies) (0.37-0.57) (0.40-0.67)
Specific cost (labor only) [1,000€/m?%gross] 0.07 0.10
(excl. VAT, excl. subsidies) (0.05-0.09) (0.08-0.13)
Investment per unit ready installed 540 (+/-22%) 3,200 (+/-24%)
[1,000€/unit] (excl. VAT, excl. subsidies) (421 -659) (2,400 — 4,000)
Fixed O&M per unit [€/m2g0ss/a]* 3.5 4.0
Variable O&M per unit [€/m?%goss/al** 1.4 1.1

* 0.75% of net investment cost (excl. labor)
** Electricity for solar pump and control (around 1.5 kWh electrical / 100 kWh heat produced). Electricity: 24€-ct/MWh
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All systems of this category are ground-
mounted and may be equipped with either
- short-term (diurnal) storages (A) or
- long-term (seasonal) storages (B)

Table 38: Benchmarks for ground-mounted solar thermal systems connected to (district) heating grids

Energy/technical data

A) with diurnal storage

B) with seasonal storage

optional

Kind of solar thermal collector used FPC FPC
optional - -
Kind of solar energy storage used Non-pressurized TTES PTES

pressurized TTES

BTES, (ATES)

Typical size per unit [MZgoss]
- range (from - to)

10,000
5,000 - 20,000 (up to 150,000)

50,000
20,000 - 70,000

Typical thermal peak capacity per unit [kW]
- range (from - to)

7,000
3,500 - 14,000

35,000
14,000 — 140,000

Typical storage volume per unit [m3.20e] 1,200 125,000
Typical annual production per unit [MWh/a] 4,100 17,500
Specific storage volume per unit [Itr./m?;s] | 120 2,500

- range (from - to) 90 - 150 1,500 - 3,500
Typical solar energy yield SE [kWh/m?.ss/a] | 410 365

- range (from - to) 380 - 460 340-390
Typical solar fraction sf [-] 12% 50%

- range (from - to) 5-20% 40-60%
Technical life time [years] 25 25

Financial data

A) with diurnal storage

B) with seasonal storage

Specific cost ready installed [1,000€/M?%goss]
(excl. VAT, excl. subsidies)

0.24 (+/- 12%)
(0.21-0.27)

0.29 (+/- 15%)
(0.25-0,33)

Specific cost (material only) [1,000€/m?2gr0ss]

0.22 (+/- 12%)

0.27 (+/- 15%)

(excl. VAT, excl. subsidies) (0.19-0.25) (0.23-0.31)
Specific cost (labor only) [1,000€/m?%gross] 0.02 0.02
(excl. VAT, excl. subsidies) (0.02-0.02) (0.01-0.02)

Investment per unit ready installed
[1,000€/unit] (excl. VAT, excl. subsidies)

2,400 (+/-12%)
(2,100 - 2,700)

14,500 (+/-15%)
(12,325 - 16,675)

Fixed O&M per unit [€/m?%goss/al*

1.7

2.0

Variable O&M per unit [€/m?goss/al*

15

1.3

* 0.75% of net investment cost (excl. labor)

** Electricity for solar pump and control (around 1.5 kWh electrical / 100 kWh heat produced). Electricity: 24€-ct/MWh
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