

Efficient solar district heating systems SHC Task 68

2nd Task Status Report 92 ExCo Meeting, Stellenbosch, South Africa

Viktor Unterberger Task Duration: 01.04.2022 – 31.03.2025 Collaborative Task with Annex TS5 (planned)

• 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)

Presentation at the Swiss National Research Day (LinkedIn Post)

5 Kommentare

• 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)

- 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)
- 9th Sep. <u>Presentation</u> at the <u>Austrian IEA Networking Event</u> (LinkedIn Post)

Presentation at the Austrian IEA Networking Event (LinkedIn Post)

Sandra Staudt • 1. Wissenschaftler in der Area Automation & Control bei BEST - Bioenergy and Sustainable Technologies... 1 Monat • 🔇

I'm happy to share our elevator pitch presentation of the IEA SHC Task 68 at the IEA Vernetzungstreffen 2022 - Mission ,Net Zero` in Vienna: https://lnkd.in/d29hBd8e

Find out more about IEA SHC Task 68 - Efficient Solar District Heating Systems - on our Homepage: https://lnkd.in/dCKZVP7s

Viktor Unterberger

IEA #SHC #Task68 #solar

Übersetzung anzeigen

IEA SHC Task 68: Effiziente solare Fernwärmesysteme (Sandra Staudt, BE...

youtube.com

- 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)
- 9th Sep. <u>Presentation</u> at the <u>Austrian IEA Networking Event</u> (LinkedIn Post)
- 25th Sep. <u>Working group Meeting</u> regarding Subtask D during the EUROSUN

Working group Meeting regarding Subtask D during the EUROSUN

- 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)
- 9th Sep. <u>Presentation</u> at the <u>Austrian IEA Networking Event</u> (LinkedIn Post)
- 25th Sep. <u>Working group Meeting</u> regarding Subtask D during the EUROSUN
- 9th 10th Nov. <u>2nd Task meeting</u> fully online with participants from 15 different countries and 31 Institutions (*LinkedIn Post*)

2nd Task meeting, fully online (LinkedIn Post)

Viktor Unterberger • Sie Senior Researcher in der Area Automation & Control bei BEST - Bio... 2 Wochen • 🚱

Regarding the decarbonization of local/district heating systems, solar technologies in particular offer a highly efficient option.

... mehr anzeigen

2nd Task meeting – statistics

- 51 registered participants (→ lessons learned from Andreas Haeberle: link only to registered participants)
- 16 different countries
- 1.3 Average Number of persons per Institution
 - (> little more than 1 person participated per company)
- ~50 % industry

Ideas /take aways for other Task Managers

- Ask for registration of the expert (see comment Andreas Haberle, Task 64), could provide additional benefit to ask:
 - ... in which subtask they are especially interested \rightarrow important information for Subtask leaders
 - ... what they can provide → project names etc.
 - ... if they want to present something
 - ... if they are interested in specific topics → e.g. standardization, research paper, joint proposal
- Introduction of Participants by slides
 - Collected 2 Slides per each institution → ~ 100 Slides !!
 - However, worked very well, people send in time, kept the limit → useful "data basis" for new participants
 - Design: 1. slide = clear structure / 2. slide = free to design by participants
- Actively use the benefits of online tools: e.g. extract chat inputs as .txt files, use online surveys, ...
- Personal vision for the task: actively provide relevant benefit for researchers and companys, e.g. joint research papers, joint projects → try to focus on that within the task

- 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)
- 9th Sep. <u>Presentation</u> at the <u>Austrian IEA Networking Event</u> (LinkedIn Post)
- 25th Sep. <u>Working group Meeting</u> regarding Subtask D during the EUROSUN
- 9th 10th Nov.
 2nd Task meeting fully online with participants from 15 different countries and 31 Institutions (*LinkedIn Post*)
- **16**th **Nov.** <u>Presentation</u> at the <u>IEA DHC Exco</u> Meeting

Presentation of the Task at the IEA DHC Exco Meeting

- 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)
- 9th Sep. <u>Presentation</u> at the <u>Austrian IEA Networking Event</u> (LinkedIn Post)
- 25th Sep. <u>Working group Meeting</u> regarding Subtask D during the EUROSUN
- 9th 10th Nov.
 2nd Task meeting fully online with participants from 15 different countries and 31 Institutions (*LinkedIn Post*)
- **16**th **Nov.** <u>Presentation</u> at the <u>IEA DHC Exco</u> Meeting
- **29th Nov.** <u>Presentation</u> at the <u>IEA HPT Annex 56 IoT</u> Meeting

Presentation of the Task at the IEA HPT Annex 56 Meeting

- 1st Jun. <u>Presentation</u> at the <u>Swiss National Research Day</u> (LinkedIn Post)
- 9th Sep. <u>Presentation</u> at the <u>Austrian IEA Networking Event</u> (LinkedIn Post)
- 25th Sep. <u>Working group Meeting</u> regarding Subtask D during the EUROSUN
- 9th 10th Nov.
 2nd Task meeting fully online with participants from 15 different countries and 31 Institutions (*LinkedIn Post*)
- **16th Nov.** <u>Presentation</u> at the <u>IEA DHC Exco</u> Meeting
 - Presentation at the IEA HPT Annex 56 IoT Meeting

Journal Paper submitted regarding <u>"Fault Detective"</u> after revision

• 29th Nov.

• 4th Dec.

<u>Paper submitted</u> into Journal of "Solar Energy Advances" regarding "Fault Detective" after revision

Fault Detective: Automatic Fault-Detection for Solar Thermal Systems based on Artificial Intelligence

Lukas Feierl¹, Viktor Unterberger², Claudio Rossi³, Bernhard Geradts¹, and Manuel Gaetani³ ¹ SOLID Solar Energy Systems, Graz (Austria) ² BEST Bioenergy and Sustainable Technologies GmbH, Graz (Austria) ³ Links Foundation, Torino (Italy)

Abstract

Fault-Detection (FD) is essential to ensure the performance of solar thermal systems. However, manually analyzing the system can be time-consuming, error-prone, and requires extensive domain knowledge. On the other hand, existing FD algorithms are often too complicated to set up, limited to specific system layouts, or have only limited foult coverage. Hence, a new FD algorithm called *Foult*. Detective is presented in this error, which is purch, data

Industry Involvement & Market Activities (great article from Solrico here: LINK)

Industry Involvement & Market Activities – <u>GERMANY</u>

- STATUS DISTRIC HEATING: 77% of the heat networks operate at temperatures 80 120°C (21% even above)
- STATUS SOLAR DISTRICT HEATING (SDH) PLANTS :
 - ... running: 48 plants / ~ 142,500 m²
 - ... planned: 9 plants / ~ 31,200 m²
 - ... in preparation: 50 plants / ~ 286,400 m²

• SPECIFIC SDH PLANTS FOR MEDIUM-HIGH TEMPERATURES:

- Lemgo, northern Germany / vacuum tube collector / 9,181 m² / focus on heat at 90°C
- Sondershausen, central Germany / vacuum flat plate collectors / 6,086 m² / heat at 85°C (even in winter) up to 160°C (planned)

• BOTTLENECKS:

- availability of land → region Baden-Württemberg is discussing how to integrate areas for solar thermal into the regional planning routines to simplify obtaining permissions.
- long permission procedures \rightarrow e.g. funding scheme needs implementation within four years, permission to build it, took 2.5 years

• GOAL/POTENTIAL/INSIGHT:

- Potential for SDH by 2050 of 13.5 THh → would mean 30 mio. m² → 1 million m² SDH collector area per year until 2050 to fulfil climate goals
- Challenging goal considering currently 142,500 m²

Industry Involvement & Market Activities – (THE) <u>NETHERLANDS</u>

- STATUS SOLAR DISTRICT HEATING (SDH) PLANTS: Not many running yet, newly built plant 2023 with 37 MW / 48 000 m² (vacuum flat plate collectors), not many planned (→ see BOTTLENECK)
- INFO REGARDING FUNDING SCHEME:
 - 2022 also <u>concentrating solar thermal collectors</u> are eligible for the subsidy scheme.
 - SDE++ is a performance-based incentive pays a feed-in premium for each kilowatt-hour produced by collector fields
 - The feed-in premium is annually revised and the net subsidy amount is determined by the difference between the cost of solar heat and the cost of heat produced by a gas boiler. (details here <u>LINK</u>)

• BOTTLENECK:

- Solar heat is <u>below the radar of Dutch policy makers</u> → attention on renewable electricity
- Latest Dutch Climate and Energy Outlook (November 2022), <u>not even mention solar heat</u> as an option for decarbonising district heating by 2030.

• GOAL/POTENTIAL/INSIGHT:

- Large multi-MW SDH system with daily heat storage were <u>found to be profitable</u> when revenues from the SDE++ premium (= funding scheme) and the emission trading system (ETS) are considered in the calculation
- Over a period of 15 years, SDE++ and ETS may provide up 60 % of the total cost of ownership, leading to a payback period of 9 years (example see . <u>LINK</u>)

Participating Countries / Sponsors

Country/Sponsor	National Participation Letter (Y/N)	Number of Research Institutes	Number of Universities	Number of Companies
Austria	Y	3	1	2
Denmark	Y		1	3
UK	Y			1
Spain	Υ		1	1
Switzerland	Ν		2	1
Germany	Y/N	4	3	3
Sweden	Ν		1	2
China	Υ	1	1	1
France	Ν	1		
Netherlands	Ν	1		
Israel (in discussion)	Ν			1
Finland	Ν			1
Italy	Ν	1	1	
Australien	Ν			1
South Africa	Ν			1
Poland (in discussion)	Ν			1
TOTAL		11 (+1)	11 (+2)	19 (+5)

Participating Countries / Sponsors

Country/Sponsor	National Participation Letter (Y/N)	Number of Research Institutes	Number of Universities	Number of Companies		
Austria	Υ	3	1	2		
Denmark	Υ		1	3		
UK	Υ			1		
Spain	Υ		1	1		
Switzerland	N		2	1		
Germany	So far good and quick response from the ExCos (Austria, Denmark, UK, Spain, Germany, China) → thank you ⓒ 1					
Sweden						
France						
Netherlands						
Finland						
Italy						
Australien	IN			1		
South Africa	N			1		
Poland (in discussion)	Ν			1		
TOTAL		11 (+1)	11 (+2)	19 (+5)		

Collaboration with other SHC Tasks, IEA TCPs, outside organizations/institutions

Collaboration with other IEA SHC Tasks

Collaboration with other IEA SHC Tasks

Collaboration with IEA DHC Annexes

Collaboration with IEA DHC Annexes

Collaboration with IEA HPT Annex

Collaboration with IEA HPT Annex

Collaboration with other SHC Tasks, IEA TCPs, outside organizations/institutions

Issues for the ExCo

Issues for the ExCo

- SUGGESTION:
 - SHC provide all currently relevant information of the program (e.g. webinars, conferences, databases, ...) in a central, continuously-updated place (e.g. in shared excel list).
 - Task managers can add it to their presentation for their task meeting, with the advantage:
 - Consistent (each TM tells the same info from the SHC)
 - All SHC related information is mentioned by the Task Manager

→ I myself presented the SHC in general, solar superstars database and the SHC linkedIn group ... but e.g. didn't mentioned the webinars ③

Likely delay of Deliverable: RD1 – Overview of efficient solar thermal plants → planned for March 2023 → in the retrospect, it is not well scheduled to have it at the beginning since currently interesting plants are build (e.g. Netherlands) → see at the end

Status and progress of the Task

Task Structure

Subtask A: Concepts

Requirements | Planning | Configuration | Modelling

Subtask B: Data preparation & utilization
Gathering/Storing data | Auto. Monitoring/Evaluation | Control

Subtask C: Business models

Financing & Investment schemes | Risks & Barriers | Cost red.

Subtask D: Use Cases and Dissemination
Demos | Awareness | Market overview | Best practice

Fechnologies /Components

Task 68 has great passionate Task leaders from <u>Germany</u>, <u>Austria</u>, <u>(the) Netherlands</u> and <u>Sweden</u> doing a great job !!!

Flhanoing a involution conomos pristo a Damors possitioa.

Demos | Awareness | Market overview | Best practice

eatpump

<u>Ja</u>

Fechn

Subtask A: Concepts

Requirements | Planning | Configuration | Modelling

Subtask B: Data preparation & utilization
 Gathering/Storing data | Auto. Monitoring/Evaluation | Control

Subtask C: Business models

Financing & Investment schemes | Risks & Barriers | Cost red.

Fechnologies /Components

Subtask A: Concepts for efficiently providing solar heat at medium-high temperature level Germany / Magdalena Berberich (SOLITES)

Insights from market for heat:

- ~10% of global energy demand is heat <200C
- solar thermal solutions provide much less than 0.1% of this heat...

Overview of the suppliers of concentrated solar thermal

Analysis → complexity is the main challenge for the potential off-takers

Work on Activity A1 & A2: Comparison of different collector technologies

- Template to collect information from different collector manufactures.
- Information from the template will be used to make appealing documents for each technology.
- Discussed with community, received good and important input will be send out to collector manufacturers

IEA SHC Task 68 – Subtask A Concepts – Template A1 1

Version 1, 10.11.2022

	Manufacturer
Name	
Location	
Year of foundation	
Website	
Coll	ector main features
Model	
Technology	
Used materials	
Receiver environment	
Specific weight [kg/m ²]	
Thermal power [W/m ²] for the	
following conditions:	
Gb = 850 [W/m ²]; Gd = 150 [W/m ²];	
ywind = 1.3 [m/s]; Tm-Ta = 0 [K]	
Tracking type (single or two axes)	
Tracking precision [°]	
Power consumption of the tracking	
[kWh,/m²a]	

Subtask A: Concepts for efficiently providing solar heat at medium-high temperature level

Deliverables

DNK	No.	Deliverable	Month
AUS	RA1	Report 1 for activity A1 and A2: Comparison of different collector technologies especially considering medium-high temperature heat and best practice examples	Jul.23
POL	RA2	Report 2 for activity A3: Analysis of existing simulation tools for the simulation of medium-high temperature SDH systems, if necessary, creation of a new easy to use calculation tool	Mär.25
	RA3	Report 3 for activity A4: Performance and efficiency measures for efficient SDH systems, especially considering medium-high temperature heat	Mär.25
	RA4	Report 4: Subtask report with management issues	Mär.25

Subtask A: Concepts

Requirements | Planning | Configuration | Mod

Subtask B: Data preparation & utilization
Gathering/Storing data | Auto. Monitoring/Evaluation | Control

Subtask C: Business models

Financing & Investment schemes | Risks & Barriers | Cost red.

Subtask B: Data preparation & utilization Austria / Sabine Putz

Operation of coupled multi-owner district heating networks via distributed optimization

- As (solar) district heating (DH) networks grow, they
 - often grow together
 → OPPORTUNITY: connect them directly/indirectly
 → CHALLENGE: different Owners, optimal operating strategy ?
- **SOLUTION** Optimization-based energy management systems (EMS) are high-level controllers that solve optimization problems in real-time and compute optimal operation schedules for all production units, • considering available solar heat.
- The presented idea evaluated on the real-world example in Austria for 3 DH networks, operated by 2 owners all controlled by an EMS.
- Results from real-world implementation show a reduction in **CO2-emissions by 35 %** and a reduction in fuel costs by 7 %.

Work on Activity B1 & B2: Efficient gathering, storing, distributing and validation of data

- Structure for the deliverable was discussed by Task community
- Inputs directly collected online during the meeting in the file

• Work on inputs, update structure and form a concrete author team.

Draft structure RB1: Efficient gathering, storing, distributing and validation of data

Sensor Technology

Consider On-device / remote Satellite image resources ((https://solcast.com/?gclid=CjwKCAiAvK2bBhB8EiwAZUbP1ETe_oJLKfRYuIFS2 xu3d-i42loO-p8lon4XCO3ot3FHf9Ll1Mb_nxoCpQgQAvD_BwE) / Forecast data

- Recommended Sensor Types
- Uncertainties of the sensor types are important
- How to install it in order to reduce measurement errors
- Recommended Measurements

Data Acquisition

- Data Logging
 - Where to do the data logging ? → on-site / in the cloud (e.g. PLC/ Database /) → looking for best-practices here
 - If you need redundancy in the data?
 - Jensen/ ISFH: Do we have to take care of the data size? Or is the approach: We
 measure everything we can and in the worst caste produce a lot of "data trash".
 - Feierl / SOLID: 1 Min. interval → typically enough to understand most of the processes, since they are quite slow. <u>Also</u> der is a ISO Draft for the performance check which needs the 1 Min. → it depends on the applications. Regarding data trash → more annoying if you could have logged the data but you didn't do it → Lukas perspective better log more data then needed

Subtask B: Data preparation & utilization

Deliverables

SWE	No.	Deliverable	Month
DALARNA	RB1	Report 1 for activity B1 & B2: <i>Efficiently gather/store/distribute data together with validation measures</i>	Sep.23
ITA	RB2	Report 2 for activity B3: Techniques for analysis, monitoring and fault detection of data	Mär.25
	RB3	Report 3 for activity B4: Comparison of state-of-the-art and advanced control strategies on sub- (component level) and superordinate level (=system level)	Mär.25
doer an a	RB4	Report 4 for activity B5: Open data approaches	Mär.25
	RB5	Report 5: Subtask report with management issues	Mär.25

AUT

Subtask A: Concepts

Requirements | Planning | Configuration | Modelling

Subtask B: Data preparation & utilization
 Gathering/Storing data | Auto. Monitoring/Evaluation | Control

Subtask C: Business models

Financing & Investment schemes | Risks & Barriers | Cost red.

Subtask D: Use Cases and Dissemination
 Demos | Awareness | Market overview | Best practic

Fechnologies /Components

Subtask C: Business models (the) Netherlands/ Luuk Beurskens

Great session, full focus on topic of COST REDUCTION, insights from

- Project Modulus "Modular Heat Transfer Station" → cost reduction through standardisation of BoP (=Balance of Plants) → see also Task 64
- WeSSun Tracking Concentrator for Fixed Tilt solar thermal Collectors
 → cost reduction through innovation
- Status and cut costs on solar heating in China → cost reduction through intelligent control strategy and multiple energy sources

Work on Activity C1 & C3: Efficient gathering, storing, distributing and validation of data

- Template for accessing the costs of different solar systems were presented
- Author team was formed for the next upcoming deliverables C1, C3

				2023			2030			2050	
]	< 1 MW	1 - 10 MW	> 10 MW	< 1 MW	1 - 10 MW	> 10 MW	< 1 MW	1 - 10 MW	> 10 MW
Investment costs total	Concentrating solar	[EUR/m2]	ြာ … b	c … d	e … f						
	Vacuum tubes	[EUR/m2]	g … h	i…j	k … I						
	Flat plate high efficient	[EUR/m2]	m … n	о…р	q … r						
	Flat plate standard	[EUR/m2]	s … t	u … v	w … x						
of which collector	Concentrating solar	[EUR/m2]									
	Vacuum tubes	[EUR/m2]									
	Flat plate high efficient	[EUR/m2]									
	Flat plate standard	[EUR/m2]									
of which balance of plant	Concentrating solar	[EUR/m2]									
	Vacuum tubes	[EUR/m2]									
	Flat plate high efficient	[EUR/m2]									
	Flat plate standard	[EUR/m2]									
of which installation costs	Concentrating solar	[EUR/m2]									
	Vacuum tubes	[EUR/m2]									
	Flat plate high efficient	[EUR/m2]									
	Flat plate standard	[EUR/m2]									
Fixed O&M costs	Concentrating solar	[EUR/m2/year]									
	Vacuum tubes	[EUR/m2/year]									
	Flat plate high efficient	[EUR/m2/year]									

Subtask C: Business models

Deliverables

	No.	Deliverable	Month
	RC1	Report 1 for activity C1 & C2: Overview of financing and investment schemes and possible new business models	Mär.24
	RC2	Report 2 for activity C3: <i>Standards and quality criteria for planners and designers of SDH systems</i>	Mär.25
1	RC3	Report 3 for activity C4: Measures and possibilities to reduce the costs of SDH systems	Mär.25
	RC4	Report 4: Subtask report with management issues	Mär.25

ESP

GER

CHN

Subtask A: Concepts

Requirements | Planning | Configuration | Modelling

Subtask B: Data preparation & utilization
Gathering/Storing data | Auto. Monitoring/Evaluation | Control

Subtask C: Business models

Financing & Investment schemes | Risks & Barriers | Cost red.

Subtask D: Use Cases and Dissemination
Demos | Awareness | Market overview | Best practice

Fechnologies /Components

Subtask D: Use Cases and Dissemination Sweden / Joakim Byström (1)

- Case Study Brønderslev
- Separate or parallel production! → High sun it's possible to run only on sun / Winter only on biomasss
- Displacing biomass consumption → maintain dispatchable power and heat generation!

Subtask D: Dissemination activity regarding

Task 68 – additional website regarding the dissemination activity (follow-up of the information brochure) → live Demo

This website is collaborative initiative of partners of **IEA SHC task 68: Efficient Solar District Heating Systems.** Here you will find explanation how solar thermal will heat 100 cities in Europe. For more information about this task visit the <u>main page</u>

Solar District Heating for 100 cities is possible today

According to Solar Heat Europe, solar district heating can replace 1/3 of all the gas used in traditional district heating with solar thermal and seasonal heat storage.

Benefits of Solar District Heating

How does it work?

With solar heat, cost saving will be made in reduced fuel consumption and maintenance.

It's time to start the transition towards a renewable and cost effective district heating network.

Follow the link to see the video explanation from company Absolicon

Revolutionizing energy supply

Since the heat is captured without any energy conversion, the efficiency is very high.

Solar Thermal Collectors have a record high optical efficiency and captures 76% of the solar energy.

Have question? Contact our subtask D manager

Message	
	Message

Solar District Heating for 100 cities is possible today

According to Solar Heat Europe, solar district heating can replace 1/3 of all the gas used in traditional district heating with solar thermal and seasonal heat storage.

EU has selected 100 cities as model cities to have zero CO₂ by 2030. See how solar heat can reduce the burning of fossil fuels in those cities.

Be a part of renewable Europe: Explore the <u>roadmap</u> provided by Solar Heat Europe

Home

Cities

District heating demand

Annual residential and service sector heat demands of Haag, MWh/a

4 815 737

Want to calculate your saving on your own?

It is easier than you might thought!

Interested how solar technology will have an impact on your life?

To cover 20% of annual heat demand of Haag city, you would need to build solar field 6 381 056 m² area, which will produce 958 447 MW/h every year.

Also, this field will reduce 7 639 799 tons of CO₂ emissions and provide city with affordable heat price for the next 30 years!

Subtask D: Business models

Deliverables

GER	No.	Deliverable	Month
	RD1	Report 1 for activity D1: Overview of efficient SDH systems especially providing medium-high temperatures	Jun.23
Normal State	RD2	Report 2 for activity D2: Future scenarios and targets for the solar sector	Mär.24
	RD3	Report 3 for activity D3: Industry workshops	Mär.25
		Report 4 for activity D4: Factsheets for industry and public regarding the task outcomes	Mär.25
Gold: District Hashing for 140 citizet is possible cody many case to low many control of the second	RD5	Report 5: Subtask report with management issues	Mär.25

Overview next steps until next ExCo Meeting

Efficient Solar District Heating Systems - IEA SHC Task 68 - Time-/Milestonesplan

October 24th 2021	2022	2023		2024	2025
October 24th 2021	J F M A M J J A S O N D	JFMAMJJ	SONE	J F M A M J J A S O N D	J F M A M J J A S O N
Task Meetings	Graz (AUT) Kassel (G	R) TBD (SWE)	4 TBD	5 6 TBD TBD	
Search for financing	MS2				
Subtask A: Concepts for efficient SDH system	s all leader SOLITES (not final)				
A1 Comparison of different collector technologies	MS_A1	🗖 F	1		
A2 Concepts and requirements of efficient SDH sys	ems				
A3 Numerical simulation tools on component and sys	tem level				
A4 Performance and efficiency measures					
A5 Subtask report					RA4
Subtask B: Data preparation & utilization	leader SOLID				
B1 Efficiently gather/store/distribute data	MS_B1		RB1		
B2 Validation of data					
B3 Techniques for analysis, monitoring and fault det	ection of data				RB2 MS_B2
B4 Comparison of control strategies					RB3 M S_B3
B5 Open data approaches					RB4
B6 Subtask report					RB5
Subtask C: Business models	leader TNO				
C1 Overview of financing and investment schemes	MS_C1			RC1	
C2 possible new business models					
C3 Standards and quality criteria for planners					
C4 Measures and possibilities to reduce the costs of	SDH systems				
C5 Subtask report					RC4
Subtask D: Use Cases and Dissemination	leader ABSOLICON				
D1 Overview of efficient SDH systems	MS_D1	RD1			
D2 Future scenarios and targets for the solar sector				📕 RD2	
D3 Industry workshops					
D4: Factsheets for industry and public regarding the	task outcomes				
D6 Subtask report					RD5
Operating Agent special Task					
Team building					
SHC ExCo -Meetings	# # # TBD TBD TBD	93 TBD	# TBD	95 # TBD TBD	97 TBD
Task presentation to conferences	ISEC EUROSUN	TBD	TBD	TBD TBD	
Mid term evaluation to ExCo					
Final reports approved by ExCo					🗖 R 🗖 MS3
				D	
Management report - Exco		eport MS Milesto		D	🗖 R 🗐 MS4

Task Meetings

Meeting	Date	Location	Number of Participants
#			& Countries/Sponsors
	4. – 5. April, 2022	Graz, Austria	55 participants
1			(virt.: 28 / phys.: 27)
			12 countries/sponsors
2	9. – 10. November, 2022	ONLINE	51 Participants
_			15 countries/sponsors
3	Tbd (March / April 2023)	Likely in Sweden	

Efficient solar district heating systems SHC Task 68

2nd Task Status Report 92 ExCo Meeting, Stellenbosch, South Africa

Viktor Unterberger Task Duration: 01.04.2022 – 31.03.2025 Collaborative Task with Annex TS5 (planned)